基于修正稳态KdV–Burgers方程的可调圆形孔剖面

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL
Sixue Cheng, Hai-jiang Liu
{"title":"基于修正稳态KdV–Burgers方程的可调圆形孔剖面","authors":"Sixue Cheng, Hai-jiang Liu","doi":"10.1080/00221686.2023.2201340","DOIUrl":null,"url":null,"abstract":"In this study, a speed parameter is introduced into the steady Korteweg–de Vries (KdV)–Burgers equation which enables the theoretical undular bore profiles to be adjustable with a proper combination of the speed parameter and the viscous damping parameter. A new criterion for identifying the above two bores is then proposed with respect to these two parameters, whose influence on the undular bore profile is then discussed. For the theoretical solution with a small damping, error after introducing the variable speed parameter is limited. A large speed parameter corresponds to a wide range of acceptable dampings. From the energy perspective, it is confirmed that the speed parameter also denotes the nonlinearity effect. In addition, comparison between the theoretical and experimental results shows the superiority of the present model over the traditional model, which also reveals the physical meanings of the present model.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On adjustable undular bore profiles based on the modified steady KdV–Burgers equation\",\"authors\":\"Sixue Cheng, Hai-jiang Liu\",\"doi\":\"10.1080/00221686.2023.2201340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a speed parameter is introduced into the steady Korteweg–de Vries (KdV)–Burgers equation which enables the theoretical undular bore profiles to be adjustable with a proper combination of the speed parameter and the viscous damping parameter. A new criterion for identifying the above two bores is then proposed with respect to these two parameters, whose influence on the undular bore profile is then discussed. For the theoretical solution with a small damping, error after introducing the variable speed parameter is limited. A large speed parameter corresponds to a wide range of acceptable dampings. From the energy perspective, it is confirmed that the speed parameter also denotes the nonlinearity effect. In addition, comparison between the theoretical and experimental results shows the superiority of the present model over the traditional model, which also reveals the physical meanings of the present model.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2201340\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2201340","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

在稳态Korteweg-de Vries (KdV) -Burgers方程中引入了一个速度参数,通过适当结合速度参数和粘性阻尼参数,实现了理论波状孔轮廓的可调。然后根据这两个参数提出了识别上述两个孔的新准则,并讨论了它们对波纹孔剖面的影响。对于阻尼较小的理论解,引入变速参数后的误差是有限的。较大的速度参数对应于较大的可接受阻尼范围。从能量角度证实了转速参数也表示非线性效应。此外,通过理论与实验结果的对比,表明了该模型相对于传统模型的优越性,也揭示了该模型的物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On adjustable undular bore profiles based on the modified steady KdV–Burgers equation
In this study, a speed parameter is introduced into the steady Korteweg–de Vries (KdV)–Burgers equation which enables the theoretical undular bore profiles to be adjustable with a proper combination of the speed parameter and the viscous damping parameter. A new criterion for identifying the above two bores is then proposed with respect to these two parameters, whose influence on the undular bore profile is then discussed. For the theoretical solution with a small damping, error after introducing the variable speed parameter is limited. A large speed parameter corresponds to a wide range of acceptable dampings. From the energy perspective, it is confirmed that the speed parameter also denotes the nonlinearity effect. In addition, comparison between the theoretical and experimental results shows the superiority of the present model over the traditional model, which also reveals the physical meanings of the present model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信