{"title":"图的一般偏心距离和的界","authors":"Yetneberk Kuma Feyissa, T. Vetrík","doi":"10.47443/dml.2022.070","DOIUrl":null,"url":null,"abstract":"Some sharp bounds on the general eccentric distance sum are presented for (i) graphs with given order and chromatic number, (ii) trees with given bipartition, and (iii) bipartite graphs with given order and matching number. Bounds for bipartite graphs hold also if the matching number is replaced by the independence number, vertex cover number or edge cover number.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the general eccentric distance sum of graphs\",\"authors\":\"Yetneberk Kuma Feyissa, T. Vetrík\",\"doi\":\"10.47443/dml.2022.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some sharp bounds on the general eccentric distance sum are presented for (i) graphs with given order and chromatic number, (ii) trees with given bipartition, and (iii) bipartite graphs with given order and matching number. Bounds for bipartite graphs hold also if the matching number is replaced by the independence number, vertex cover number or edge cover number.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounds on the general eccentric distance sum of graphs
Some sharp bounds on the general eccentric distance sum are presented for (i) graphs with given order and chromatic number, (ii) trees with given bipartition, and (iii) bipartite graphs with given order and matching number. Bounds for bipartite graphs hold also if the matching number is replaced by the independence number, vertex cover number or edge cover number.