异构V2X网络中基于多agent深度强化学习的资源管理

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Junhui Zhao , Fajin Hu , Jiahang Li , Yiwen Nie
{"title":"异构V2X网络中基于多agent深度强化学习的资源管理","authors":"Junhui Zhao ,&nbsp;Fajin Hu ,&nbsp;Jiahang Li ,&nbsp;Yiwen Nie","doi":"10.1016/j.dcan.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>In Heterogeneous Vehicle-to-Everything Networks (HVNs), multiple users such as vehicles and handheld devices and infrastructure can communicate with each other to obtain more advanced services. However, the increasing number of entities accessing HVNs presents a huge technical challenge to allocate the limited wireless resources. Traditional model-driven resource allocation approaches are no longer applicable because of rich data and the interference problem of multiple communication modes reusing resources in HVNs. In this paper, we investigate a wireless resource allocation scheme including power control and spectrum allocation based on the resource block reuse strategy. To meet the high capacity of cellular users and the high reliability of Vehicle-to-Vehicle (V2V) user pairs, we propose a data-driven Multi-Agent Deep Reinforcement Learning (MADRL) resource allocation scheme for the HVN. Simulation results demonstrate that compared to existing algorithms, the proposed MADRL-based scheme achieves a high sum capacity and probability of successful V2V transmission, while providing close-to-limit performance.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 1","pages":"Pages 182-190"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-agent deep reinforcement learning based resource management in heterogeneous V2X networks\",\"authors\":\"Junhui Zhao ,&nbsp;Fajin Hu ,&nbsp;Jiahang Li ,&nbsp;Yiwen Nie\",\"doi\":\"10.1016/j.dcan.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Heterogeneous Vehicle-to-Everything Networks (HVNs), multiple users such as vehicles and handheld devices and infrastructure can communicate with each other to obtain more advanced services. However, the increasing number of entities accessing HVNs presents a huge technical challenge to allocate the limited wireless resources. Traditional model-driven resource allocation approaches are no longer applicable because of rich data and the interference problem of multiple communication modes reusing resources in HVNs. In this paper, we investigate a wireless resource allocation scheme including power control and spectrum allocation based on the resource block reuse strategy. To meet the high capacity of cellular users and the high reliability of Vehicle-to-Vehicle (V2V) user pairs, we propose a data-driven Multi-Agent Deep Reinforcement Learning (MADRL) resource allocation scheme for the HVN. Simulation results demonstrate that compared to existing algorithms, the proposed MADRL-based scheme achieves a high sum capacity and probability of successful V2V transmission, while providing close-to-limit performance.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 1\",\"pages\":\"Pages 182-190\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001104\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001104","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-agent deep reinforcement learning based resource management in heterogeneous V2X networks
In Heterogeneous Vehicle-to-Everything Networks (HVNs), multiple users such as vehicles and handheld devices and infrastructure can communicate with each other to obtain more advanced services. However, the increasing number of entities accessing HVNs presents a huge technical challenge to allocate the limited wireless resources. Traditional model-driven resource allocation approaches are no longer applicable because of rich data and the interference problem of multiple communication modes reusing resources in HVNs. In this paper, we investigate a wireless resource allocation scheme including power control and spectrum allocation based on the resource block reuse strategy. To meet the high capacity of cellular users and the high reliability of Vehicle-to-Vehicle (V2V) user pairs, we propose a data-driven Multi-Agent Deep Reinforcement Learning (MADRL) resource allocation scheme for the HVN. Simulation results demonstrate that compared to existing algorithms, the proposed MADRL-based scheme achieves a high sum capacity and probability of successful V2V transmission, while providing close-to-limit performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信