使用建筑几何数据和多元线性回归

Q1 Engineering
Chittella Ravichandran, Padmanaban Gopalakrishnan
{"title":"使用建筑几何数据和多元线性回归","authors":"Chittella Ravichandran,&nbsp;Padmanaban Gopalakrishnan","doi":"10.1016/j.enbenv.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>International Energy Agency (IEA) predicts India's AC stock will reach 1144 million units by 2050, making it the second largest ACs holder globally. Studies on the effect of building geometry on cooling load reduction are primarily focused on material and envelope specifications. However, studies on building morphological parameters in the Indian context are scarce. Therefore, this research quantifies the effect of four morphology predictors, namely, FL (floor number), ESA (exposed surface area), CZB (conditioned zones per building), and CZF (conditioned zones per floor) on cooling load in 75 dominant residential built forms of Navi Mumbai. The selected buildings are simulated using the Rhinoceros 6 tool with the energy plus plugin. Despite having the same simulation inputs, envelope parameters, and conditioned volume, the results indicated a 90 % variation between the compact and loosely designed forms. Multiple Linear Regression shows that the four predictors explain 78% (R<sup>2</sup> = 0.78) of variation in the cooling load. It is observed that tall buildings show greater efficiency in cooling load reduction due to lesser CZF values. Also, an increase in CZB and a decrease in ESA significantly reduce the mean cooling load due to compactness and wall sharing, respectively.</p></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"5 5","pages":"Pages 741-771"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666123323000508/pdfft?md5=512e669ef7f3abcddd10c68cb03a2186&pid=1-s2.0-S2666123323000508-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating cooling loads of Indian residences using building geometry data and multiple linear regression\",\"authors\":\"Chittella Ravichandran,&nbsp;Padmanaban Gopalakrishnan\",\"doi\":\"10.1016/j.enbenv.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>International Energy Agency (IEA) predicts India's AC stock will reach 1144 million units by 2050, making it the second largest ACs holder globally. Studies on the effect of building geometry on cooling load reduction are primarily focused on material and envelope specifications. However, studies on building morphological parameters in the Indian context are scarce. Therefore, this research quantifies the effect of four morphology predictors, namely, FL (floor number), ESA (exposed surface area), CZB (conditioned zones per building), and CZF (conditioned zones per floor) on cooling load in 75 dominant residential built forms of Navi Mumbai. The selected buildings are simulated using the Rhinoceros 6 tool with the energy plus plugin. Despite having the same simulation inputs, envelope parameters, and conditioned volume, the results indicated a 90 % variation between the compact and loosely designed forms. Multiple Linear Regression shows that the four predictors explain 78% (R<sup>2</sup> = 0.78) of variation in the cooling load. It is observed that tall buildings show greater efficiency in cooling load reduction due to lesser CZF values. Also, an increase in CZB and a decrease in ESA significantly reduce the mean cooling load due to compactness and wall sharing, respectively.</p></div>\",\"PeriodicalId\":33659,\"journal\":{\"name\":\"Energy and Built Environment\",\"volume\":\"5 5\",\"pages\":\"Pages 741-771\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666123323000508/pdfft?md5=512e669ef7f3abcddd10c68cb03a2186&pid=1-s2.0-S2666123323000508-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666123323000508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123323000508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

国际能源机构(IEA)预测,到 2050 年,印度的空调保有量将达到 1.14 亿台,成为全球第二大空调保有国。有关建筑几何形状对降低冷负荷影响的研究主要集中在材料和围护结构规格方面。然而,有关印度建筑形态参数的研究却很少。因此,本研究量化了纳维孟买 75 个主要住宅建筑形态中的四个形态预测因子,即 FL(楼层数)、ESA(暴露表面积)、CZB(每栋建筑的调节区)和 CZF(每层的调节区)对冷负荷的影响。所选建筑使用 Rhinoceros 6 工具和能源加插件进行模拟。尽管模拟输入、围护结构参数和调节容积相同,但结果表明紧凑型和松散型设计之间的差异高达 90%。多元线性回归显示,四个预测因子可解释 78% 的冷却负荷变化(R2 = 0.78)。据观察,由于 CZF 值较小,高层建筑在降低冷负荷方面表现出更高的效率。此外,CZB 值的增加和 ESA 值的减少分别显著降低了平均冷负荷,这是由于建筑结构紧凑和墙体共享的缘故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating cooling loads of Indian residences using building geometry data and multiple linear regression

Estimating cooling loads of Indian residences using building geometry data and multiple linear regression

International Energy Agency (IEA) predicts India's AC stock will reach 1144 million units by 2050, making it the second largest ACs holder globally. Studies on the effect of building geometry on cooling load reduction are primarily focused on material and envelope specifications. However, studies on building morphological parameters in the Indian context are scarce. Therefore, this research quantifies the effect of four morphology predictors, namely, FL (floor number), ESA (exposed surface area), CZB (conditioned zones per building), and CZF (conditioned zones per floor) on cooling load in 75 dominant residential built forms of Navi Mumbai. The selected buildings are simulated using the Rhinoceros 6 tool with the energy plus plugin. Despite having the same simulation inputs, envelope parameters, and conditioned volume, the results indicated a 90 % variation between the compact and loosely designed forms. Multiple Linear Regression shows that the four predictors explain 78% (R2 = 0.78) of variation in the cooling load. It is observed that tall buildings show greater efficiency in cooling load reduction due to lesser CZF values. Also, an increase in CZB and a decrease in ESA significantly reduce the mean cooling load due to compactness and wall sharing, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信