Lyapunov不稳定椭圆平衡

IF 3.5 1区 数学 Q1 MATHEMATICS
B. Fayad
{"title":"Lyapunov不稳定椭圆平衡","authors":"B. Fayad","doi":"10.1090/jams/997","DOIUrl":null,"url":null,"abstract":"A new diffusion mechanism from the neighborhood of elliptic equilibria for Hamiltonian flows in three or more degrees of freedom is introduced. We thus obtain explicit real entire Hamiltonians on \n\n \n \n \n R\n \n \n 2\n d\n \n \n \\mathbb {R}^{2d}\n \n\n, \n\n \n \n d\n ≥\n 4\n \n d\\geq 4\n \n\n, that have a Lyapunov unstable elliptic equilibrium with an arbitrary chosen frequency vector whose coordinates are not all of the same sign. For non-resonant frequency vectors, our examples all have divergent Birkhoff normal form at the equilibrium.\n\nOn \n\n \n \n \n R\n \n 4\n \n \\mathbb {R}^4\n \n\n, we give explicit examples of real entire Hamiltonians having an equilibrium with an arbitrary chosen non-resonant frequency vector and a divergent Birkhoff normal form.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Lyapunov unstable elliptic equilibria\",\"authors\":\"B. Fayad\",\"doi\":\"10.1090/jams/997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new diffusion mechanism from the neighborhood of elliptic equilibria for Hamiltonian flows in three or more degrees of freedom is introduced. We thus obtain explicit real entire Hamiltonians on \\n\\n \\n \\n \\n R\\n \\n \\n 2\\n d\\n \\n \\n \\\\mathbb {R}^{2d}\\n \\n\\n, \\n\\n \\n \\n d\\n ≥\\n 4\\n \\n d\\\\geq 4\\n \\n\\n, that have a Lyapunov unstable elliptic equilibrium with an arbitrary chosen frequency vector whose coordinates are not all of the same sign. For non-resonant frequency vectors, our examples all have divergent Birkhoff normal form at the equilibrium.\\n\\nOn \\n\\n \\n \\n \\n R\\n \\n 4\\n \\n \\\\mathbb {R}^4\\n \\n\\n, we give explicit examples of real entire Hamiltonians having an equilibrium with an arbitrary chosen non-resonant frequency vector and a divergent Birkhoff normal form.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/997\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/997","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

介绍了一种新的三自由度哈密顿流的扩散机制,它是由椭圆平衡邻域出发的。因此,我们得到了r2上的显式实数完整哈密顿量\mathbb R{^}2d{, d≥4d }\geq 4,它具有具有任意选择的频率向量的Lyapunov不稳定椭圆平衡,其坐标不都是相同的符号。对于非谐振频率矢量,我们的例子在平衡状态下都具有发散的Birkhoff范式。在r4 \mathbb R{^4上,我们给出了具有任意选择的非谐振频率矢量和发散Birkhoff范式的平衡的实全哈密顿量的显式例子。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lyapunov unstable elliptic equilibria
A new diffusion mechanism from the neighborhood of elliptic equilibria for Hamiltonian flows in three or more degrees of freedom is introduced. We thus obtain explicit real entire Hamiltonians on R 2 d \mathbb {R}^{2d} , d ≥ 4 d\geq 4 , that have a Lyapunov unstable elliptic equilibrium with an arbitrary chosen frequency vector whose coordinates are not all of the same sign. For non-resonant frequency vectors, our examples all have divergent Birkhoff normal form at the equilibrium. On R 4 \mathbb {R}^4 , we give explicit examples of real entire Hamiltonians having an equilibrium with an arbitrary chosen non-resonant frequency vector and a divergent Birkhoff normal form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信