一种利用图像处理模型评估CuO掺杂烧结氧化铝陶瓷磨损行为的新方法

IF 1.5 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
P. Haldar, T. K. Bhattacharya, N. Modak
{"title":"一种利用图像处理模型评估CuO掺杂烧结氧化铝陶瓷磨损行为的新方法","authors":"P. Haldar, T. K. Bhattacharya, N. Modak","doi":"10.1080/0371750X.2023.2223236","DOIUrl":null,"url":null,"abstract":"The present research describes the post wear SEM images of nano-CuO doped alumina ceramics in the light of three different image processing algorithms, viz. entropy analysis, Sobel edge detection techniques and entropy filtered image histogram analysis. The 2 wt% CuO doped sintered alumina has shown the best performance towards wearing due to maximum bulk density, hardness and fracture toughness. These materialistic properties are fitted to correlate with the lowest value of entropy and edge density index at the level of 2 wt% doping. The entropy filtered image histogram of 2 wt% doping is the closest to the Gaussian Bell shape distribution with the lowest skewness factor. These three-image computed methods validate their suitability in developing a real-life implementation for a possible wear resistance estimator. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":"82 1","pages":"187 - 194"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach to Evaluate the Wear Behavior of CuO Doped Sintered Alumina Ceramics Using Image Processing Models\",\"authors\":\"P. Haldar, T. K. Bhattacharya, N. Modak\",\"doi\":\"10.1080/0371750X.2023.2223236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research describes the post wear SEM images of nano-CuO doped alumina ceramics in the light of three different image processing algorithms, viz. entropy analysis, Sobel edge detection techniques and entropy filtered image histogram analysis. The 2 wt% CuO doped sintered alumina has shown the best performance towards wearing due to maximum bulk density, hardness and fracture toughness. These materialistic properties are fitted to correlate with the lowest value of entropy and edge density index at the level of 2 wt% doping. The entropy filtered image histogram of 2 wt% doping is the closest to the Gaussian Bell shape distribution with the lowest skewness factor. These three-image computed methods validate their suitability in developing a real-life implementation for a possible wear resistance estimator. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23233,\"journal\":{\"name\":\"Transactions of the Indian Ceramic Society\",\"volume\":\"82 1\",\"pages\":\"187 - 194\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Indian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/0371750X.2023.2223236\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2023.2223236","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用三种不同的图像处理算法,即熵分析、Sobel边缘检测技术和熵滤波图像直方图分析,对纳米CuO掺杂氧化铝陶瓷的磨损后SEM图像进行了描述。由于最大堆积密度、硬度和断裂韧性,掺杂2wt%CuO的烧结氧化铝显示出最佳的耐磨性能。这些物质性质被拟合为与在2wt%掺杂水平下的熵和边缘密度指数的最低值相关。2wt%掺杂的熵滤波图像直方图最接近具有最低偏度因子的高斯钟形分布。这三种图像计算方法验证了它们在开发可能的耐磨性估计器的实际实现中的适用性。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach to Evaluate the Wear Behavior of CuO Doped Sintered Alumina Ceramics Using Image Processing Models
The present research describes the post wear SEM images of nano-CuO doped alumina ceramics in the light of three different image processing algorithms, viz. entropy analysis, Sobel edge detection techniques and entropy filtered image histogram analysis. The 2 wt% CuO doped sintered alumina has shown the best performance towards wearing due to maximum bulk density, hardness and fracture toughness. These materialistic properties are fitted to correlate with the lowest value of entropy and edge density index at the level of 2 wt% doping. The entropy filtered image histogram of 2 wt% doping is the closest to the Gaussian Bell shape distribution with the lowest skewness factor. These three-image computed methods validate their suitability in developing a real-life implementation for a possible wear resistance estimator. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Indian Ceramic Society
Transactions of the Indian Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
2.40
自引率
8.30%
发文量
12
审稿时长
2.3 months
期刊介绍: Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family. The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信