Besov空间中FORQ方程解映射数据的连续性

IF 1.8 4区 数学 Q1 MATHEMATICS
J. Holmes, F. Tiglay, R. Thompson
{"title":"Besov空间中FORQ方程解映射数据的连续性","authors":"J. Holmes, F. Tiglay, R. Thompson","doi":"10.57262/die034-0506-295","DOIUrl":null,"url":null,"abstract":"For Besov spaces $B^s_{p,r}(\\rr)$ with $s>\\max\\{ 2 + \\frac1p , \\frac52\\} $, $p \\in (1,\\infty]$ and $r \\in [1 , \\infty)$, it is proved that the data-to-solution map for the FORQ equation is not uniformly continuous from $B^s_{p,r}(\\rr)$ to $C([0,T]; B^s_{p,r}(\\rr))$. The proof of non-uniform dependence is based on approximate solutions and the Littlewood-Paley decomposition.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Continuity of the data-to-solution map for the FORQ equation in Besov spaces\",\"authors\":\"J. Holmes, F. Tiglay, R. Thompson\",\"doi\":\"10.57262/die034-0506-295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Besov spaces $B^s_{p,r}(\\\\rr)$ with $s>\\\\max\\\\{ 2 + \\\\frac1p , \\\\frac52\\\\} $, $p \\\\in (1,\\\\infty]$ and $r \\\\in [1 , \\\\infty)$, it is proved that the data-to-solution map for the FORQ equation is not uniformly continuous from $B^s_{p,r}(\\\\rr)$ to $C([0,T]; B^s_{p,r}(\\\\rr))$. The proof of non-uniform dependence is based on approximate solutions and the Littlewood-Paley decomposition.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die034-0506-295\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die034-0506-295","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

对于含有$s>\max\{ 2 + \frac1p , \frac52\} $、$p \in (1,\infty]$和$r \in [1 , \infty)$的Besov空间$B^s_{p,r}(\rr)$,证明了FORQ方程的数据-解映射从$B^s_{p,r}(\rr)$到$C([0,T]; B^s_{p,r}(\rr))$不是一致连续的。非一致相关性的证明是基于近似解和Littlewood-Paley分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuity of the data-to-solution map for the FORQ equation in Besov spaces
For Besov spaces $B^s_{p,r}(\rr)$ with $s>\max\{ 2 + \frac1p , \frac52\} $, $p \in (1,\infty]$ and $r \in [1 , \infty)$, it is proved that the data-to-solution map for the FORQ equation is not uniformly continuous from $B^s_{p,r}(\rr)$ to $C([0,T]; B^s_{p,r}(\rr))$. The proof of non-uniform dependence is based on approximate solutions and the Littlewood-Paley decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信