随机群密度型模型的性质(T)

Pub Date : 2021-04-30 DOI:10.4171/ggd/730
C. Ashcroft
{"title":"随机群密度型模型的性质(T)","authors":"C. Ashcroft","doi":"10.4171/ggd/730","DOIUrl":null,"url":null,"abstract":"We study Property (T) in the $\\Gamma(n,k,d)$ model of random groups: as $k$ tends to infinity this gives the Gromov density model, introduced in [Gro93]. We provide bounds for Property (T) in the $k$-angular model of random groups, i.e. the $ \\Gamma (n,k,d)$ model where $k$ is fixed and $n$ tends to infinity. We also prove that for $d>1\\slash 3$, a random group in the $\\Gamma(n,k,d)$ model has Property (T) with probability tending to $1$ as $k$ tends to infinity, strengthening the results of \\.{Z}uk and Kotowski--Kotowski, who consider only groups in the $\\Gamma (n,3k,d)$ model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Property (T) in density-type models of random groups\",\"authors\":\"C. Ashcroft\",\"doi\":\"10.4171/ggd/730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Property (T) in the $\\\\Gamma(n,k,d)$ model of random groups: as $k$ tends to infinity this gives the Gromov density model, introduced in [Gro93]. We provide bounds for Property (T) in the $k$-angular model of random groups, i.e. the $ \\\\Gamma (n,k,d)$ model where $k$ is fixed and $n$ tends to infinity. We also prove that for $d>1\\\\slash 3$, a random group in the $\\\\Gamma(n,k,d)$ model has Property (T) with probability tending to $1$ as $k$ tends to infinity, strengthening the results of \\\\.{Z}uk and Kotowski--Kotowski, who consider only groups in the $\\\\Gamma (n,3k,d)$ model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了随机群的$\Gamma(n,k,d)$模型中的性质(T):当$k$趋于无穷时,这给出了在[Gro93]中介绍的Gromov密度模型。在随机群的$k$角模型中,即$ \Gamma (n,k,d)$模型中,我们给出了属性(T)的界,其中$k$是固定的,$n$趋于无穷。我们还证明了对于$d>1\斜线3$,$\Gamma(n,k,d)$模型中的一个随机群具有性质(T),当$k$趋于无穷时,其概率趋于$1$,从而加强了\的结果。{Z}uk和Kotowski—Kotowski,他们只考虑$\Gamma (n,3k,d)$模型中的组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Property (T) in density-type models of random groups
We study Property (T) in the $\Gamma(n,k,d)$ model of random groups: as $k$ tends to infinity this gives the Gromov density model, introduced in [Gro93]. We provide bounds for Property (T) in the $k$-angular model of random groups, i.e. the $ \Gamma (n,k,d)$ model where $k$ is fixed and $n$ tends to infinity. We also prove that for $d>1\slash 3$, a random group in the $\Gamma(n,k,d)$ model has Property (T) with probability tending to $1$ as $k$ tends to infinity, strengthening the results of \.{Z}uk and Kotowski--Kotowski, who consider only groups in the $\Gamma (n,3k,d)$ model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信