非线性Sasa-Satsuma动力系统色散波传播的计算和解析孤子解

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Eman Simbawa , Aly R. Seadawy , Taghreed G. Sugati
{"title":"非线性Sasa-Satsuma动力系统色散波传播的计算和解析孤子解","authors":"Eman Simbawa ,&nbsp;Aly R. Seadawy ,&nbsp;Taghreed G. Sugati","doi":"10.1016/j.chaos.2021.111376","DOIUrl":null,"url":null,"abstract":"<div><p>The Sasa-Satsuma equation on a continuous background describes a nonlinear fiber system with higher-order effects including the third-order dispersion and Kerr dispersion. The Sasa-Satsuma equations describe the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening, and stimulated Raman in scattering effects, and govern the propagation of ultra-fast pulses in optical fiber transmission systems. We consider the Sasa-Satsuma equation, which is one of the integrable extensions of the nonlinear Schrödinger equations. We find the functional integral and the Lagrangian of this model. We derived the computational and analytical soliton solutions of the nonlinear Sasa-Satsuma dynamical system. We discuss the stability analysis for our solutions.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"152 ","pages":"Article 111376"},"PeriodicalIF":5.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dispersive wave propagation of the nonlinear Sasa-Satsuma dynamical system with computational and analytical soliton solutions\",\"authors\":\"Eman Simbawa ,&nbsp;Aly R. Seadawy ,&nbsp;Taghreed G. Sugati\",\"doi\":\"10.1016/j.chaos.2021.111376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Sasa-Satsuma equation on a continuous background describes a nonlinear fiber system with higher-order effects including the third-order dispersion and Kerr dispersion. The Sasa-Satsuma equations describe the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening, and stimulated Raman in scattering effects, and govern the propagation of ultra-fast pulses in optical fiber transmission systems. We consider the Sasa-Satsuma equation, which is one of the integrable extensions of the nonlinear Schrödinger equations. We find the functional integral and the Lagrangian of this model. We derived the computational and analytical soliton solutions of the nonlinear Sasa-Satsuma dynamical system. We discuss the stability analysis for our solutions.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"152 \",\"pages\":\"Article 111376\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096007792100730X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792100730X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 9

摘要

连续背景下的Sasa-Satsuma方程描述了具有三阶色散和克尔色散等高阶效应的非线性光纤系统。Sasa-Satsuma方程描述了两个超短脉冲在双折射或双模光纤中具有三阶色散、自陡增和受激拉曼散射效应的同时传播,并控制了超快脉冲在光纤传输系统中的传播。本文研究了一类非线性Schrödinger方程的可积扩展——Sasa-Satsuma方程。求出该模型的泛函积分和拉格朗日量。导出了非线性Sasa-Satsuma动力系统的计算解和解析解。讨论了解的稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersive wave propagation of the nonlinear Sasa-Satsuma dynamical system with computational and analytical soliton solutions

The Sasa-Satsuma equation on a continuous background describes a nonlinear fiber system with higher-order effects including the third-order dispersion and Kerr dispersion. The Sasa-Satsuma equations describe the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening, and stimulated Raman in scattering effects, and govern the propagation of ultra-fast pulses in optical fiber transmission systems. We consider the Sasa-Satsuma equation, which is one of the integrable extensions of the nonlinear Schrödinger equations. We find the functional integral and the Lagrangian of this model. We derived the computational and analytical soliton solutions of the nonlinear Sasa-Satsuma dynamical system. We discuss the stability analysis for our solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信