{"title":"集和例外方向的投影的盒和包装尺寸的容量方法","authors":"K. Falconer","doi":"10.4171/jfg/96","DOIUrl":null,"url":null,"abstract":"Dimension profiles were introduced in [8,11] to give a formula for the box-counting and packing dimensions of the orthogonal projections of a set $R^n$ onto almost all $m$-dimensional subspaces. However, these definitions of dimension profiles are indirect and are hard to work with. Here we firstly give alternative definitions of dimension profiles in terms of capacities of $E$ with respect to certain kernels, which lead to the box-counting and packing dimensions of projections fairly easily, including estimates on the size of the exceptional sets of subspaces where the dimension of projection is smaller the typical value. Secondly, we argue that with this approach projection results for different types of dimension may be thought of in a unified way. Thirdly, we use a Fourier transform method to obtain further inequalities on the size of the exceptional subspaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A capacity approach to box and packing dimensions of projections of sets and exceptional directions\",\"authors\":\"K. Falconer\",\"doi\":\"10.4171/jfg/96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimension profiles were introduced in [8,11] to give a formula for the box-counting and packing dimensions of the orthogonal projections of a set $R^n$ onto almost all $m$-dimensional subspaces. However, these definitions of dimension profiles are indirect and are hard to work with. Here we firstly give alternative definitions of dimension profiles in terms of capacities of $E$ with respect to certain kernels, which lead to the box-counting and packing dimensions of projections fairly easily, including estimates on the size of the exceptional sets of subspaces where the dimension of projection is smaller the typical value. Secondly, we argue that with this approach projection results for different types of dimension may be thought of in a unified way. Thirdly, we use a Fourier transform method to obtain further inequalities on the size of the exceptional subspaces.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/96\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/96","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A capacity approach to box and packing dimensions of projections of sets and exceptional directions
Dimension profiles were introduced in [8,11] to give a formula for the box-counting and packing dimensions of the orthogonal projections of a set $R^n$ onto almost all $m$-dimensional subspaces. However, these definitions of dimension profiles are indirect and are hard to work with. Here we firstly give alternative definitions of dimension profiles in terms of capacities of $E$ with respect to certain kernels, which lead to the box-counting and packing dimensions of projections fairly easily, including estimates on the size of the exceptional sets of subspaces where the dimension of projection is smaller the typical value. Secondly, we argue that with this approach projection results for different types of dimension may be thought of in a unified way. Thirdly, we use a Fourier transform method to obtain further inequalities on the size of the exceptional subspaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.