实验培养条件下顶叶缘孢和大叶角叉孢的生长和繁殖力

IF 0.9 4区 地球科学 Q4 PALEONTOLOGY
R. Naidu, M. Ford, P. Kench, P. Hallock, R. Prasad
{"title":"实验培养条件下顶叶缘孢和大叶角叉孢的生长和繁殖力","authors":"R. Naidu, M. Ford, P. Kench, P. Hallock, R. Prasad","doi":"10.2113/gsjfr.51.3.210","DOIUrl":null,"url":null,"abstract":"\n The shells of large benthic foraminifers (LBF) are key contributors to the development and maintenance of coastal landforms in the Pacific as well as to Paleogene and Miocene carbonates deposited along the Neotethys Seaway and tropical Pacific islands. The current study assessed growth and fecundity of two species, Marginopora vertebralis and Amphistegina lobifera, collected from sites in Viti Levu, Fiji, based on shell diameter, shell weight, fecundity, and survival. Specimens were cultured without supplemental nutrients or food for 15 months under controlled laboratory conditions. Physicochemical parameters, including salinity, alkalinity, pH, and temperature, varied by <5% throughout the experiment. Asexual reproduction by M. vertebralis produced ∼270 offspring per brood, while A. lobifera produced ∼500 offspring per brood. The minimum size at reproduction for M. vertebralis was 15 mm, and A. lobifera reproduction occurred at diameters ≥0.9 mm. These observations were consistent with those of previous studies that predicted asexual fecundity related to parent size. Four non-linear mathematical functions (exponential, Gompertz, logistic, and von Bertalanffy) were compared to describe the age-weight relationship for each species. Results revealed that the logistic model best fits M. vertebralis growth, and von Bertalanffy model best fits A. lobifera growth. The growth model for A. lobifera predicted trends in juvenile growth and maximum size consistent with a previously published von Bertalanffy model based on cultures in which the foraminifers were provided nutrient sources and grew much faster than those observed in this study. These observations support published hypotheses that many LBF are exceptionally well-adapted to extreme oligotrophy, a characteristic that accounted for their dominance as carbonate producers in the Paleogene and Miocene of the Neotethys and Pacific islands.","PeriodicalId":54832,"journal":{"name":"Journal of Foraminiferal Research","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and Fecundity of Marginopora Vertebralis and Amphistegina Lobifera in Laboratory Culture\",\"authors\":\"R. Naidu, M. Ford, P. Kench, P. Hallock, R. Prasad\",\"doi\":\"10.2113/gsjfr.51.3.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The shells of large benthic foraminifers (LBF) are key contributors to the development and maintenance of coastal landforms in the Pacific as well as to Paleogene and Miocene carbonates deposited along the Neotethys Seaway and tropical Pacific islands. The current study assessed growth and fecundity of two species, Marginopora vertebralis and Amphistegina lobifera, collected from sites in Viti Levu, Fiji, based on shell diameter, shell weight, fecundity, and survival. Specimens were cultured without supplemental nutrients or food for 15 months under controlled laboratory conditions. Physicochemical parameters, including salinity, alkalinity, pH, and temperature, varied by <5% throughout the experiment. Asexual reproduction by M. vertebralis produced ∼270 offspring per brood, while A. lobifera produced ∼500 offspring per brood. The minimum size at reproduction for M. vertebralis was 15 mm, and A. lobifera reproduction occurred at diameters ≥0.9 mm. These observations were consistent with those of previous studies that predicted asexual fecundity related to parent size. Four non-linear mathematical functions (exponential, Gompertz, logistic, and von Bertalanffy) were compared to describe the age-weight relationship for each species. Results revealed that the logistic model best fits M. vertebralis growth, and von Bertalanffy model best fits A. lobifera growth. The growth model for A. lobifera predicted trends in juvenile growth and maximum size consistent with a previously published von Bertalanffy model based on cultures in which the foraminifers were provided nutrient sources and grew much faster than those observed in this study. These observations support published hypotheses that many LBF are exceptionally well-adapted to extreme oligotrophy, a characteristic that accounted for their dominance as carbonate producers in the Paleogene and Miocene of the Neotethys and Pacific islands.\",\"PeriodicalId\":54832,\"journal\":{\"name\":\"Journal of Foraminiferal Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Foraminiferal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/gsjfr.51.3.210\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Foraminiferal Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/gsjfr.51.3.210","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大型底栖有孔虫(LBF)的壳对太平洋海岸地貌的发展和维持以及沿新特提斯海道和热带太平洋岛屿沉积的古近纪和中新世碳酸盐起着关键作用。目前的研究基于壳直径、壳重、繁殖力和存活率,评估了从斐济Viti Levu采集的两种物种——边际脊椎鱼(Marginopora vertebralis)和两栖虾(Amphistegina lobifera)的生长和繁殖力。在受控的实验室条件下,不添加营养或食物培养标本15个月。物理化学参数,包括盐度、碱度、pH值和温度,在整个实验过程中变化<5%。无性繁殖的M.脊椎虫每窝产生约270个后代,而A. lobifera每窝产生约500个后代。棘田鼠繁殖时的最小尺寸为15 mm,大叶田鼠繁殖时的最小尺寸≥0.9 mm。这些观察结果与先前预测无性繁殖能力与亲本大小有关的研究一致。比较了四种非线性数学函数(指数函数、Gompertz函数、logistic函数和von Bertalanffy函数)来描述每个物种的年龄-体重关系。结果表明,logistic模型最适合脊椎松的生长,von Bertalanffy模型最适合大叶松的生长。大叶虫的生长模型预测了幼虫的生长趋势和最大尺寸与先前发表的von Bertalanffy模型一致,该模型基于培养物,其中有孔虫提供营养来源,并且比本研究中观察到的生长速度快得多。这些观察结果支持了已发表的假设,即许多LBF非常好地适应了极端寡营养,这一特征解释了它们在新特提斯和太平洋岛屿的古近纪和中新世作为碳酸盐生产者的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth and Fecundity of Marginopora Vertebralis and Amphistegina Lobifera in Laboratory Culture
The shells of large benthic foraminifers (LBF) are key contributors to the development and maintenance of coastal landforms in the Pacific as well as to Paleogene and Miocene carbonates deposited along the Neotethys Seaway and tropical Pacific islands. The current study assessed growth and fecundity of two species, Marginopora vertebralis and Amphistegina lobifera, collected from sites in Viti Levu, Fiji, based on shell diameter, shell weight, fecundity, and survival. Specimens were cultured without supplemental nutrients or food for 15 months under controlled laboratory conditions. Physicochemical parameters, including salinity, alkalinity, pH, and temperature, varied by <5% throughout the experiment. Asexual reproduction by M. vertebralis produced ∼270 offspring per brood, while A. lobifera produced ∼500 offspring per brood. The minimum size at reproduction for M. vertebralis was 15 mm, and A. lobifera reproduction occurred at diameters ≥0.9 mm. These observations were consistent with those of previous studies that predicted asexual fecundity related to parent size. Four non-linear mathematical functions (exponential, Gompertz, logistic, and von Bertalanffy) were compared to describe the age-weight relationship for each species. Results revealed that the logistic model best fits M. vertebralis growth, and von Bertalanffy model best fits A. lobifera growth. The growth model for A. lobifera predicted trends in juvenile growth and maximum size consistent with a previously published von Bertalanffy model based on cultures in which the foraminifers were provided nutrient sources and grew much faster than those observed in this study. These observations support published hypotheses that many LBF are exceptionally well-adapted to extreme oligotrophy, a characteristic that accounted for their dominance as carbonate producers in the Paleogene and Miocene of the Neotethys and Pacific islands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Foraminiferal Research
Journal of Foraminiferal Research 地学-古生物学
CiteScore
2.10
自引率
9.10%
发文量
32
审稿时长
>12 weeks
期刊介绍: JFR publishes original papers of international interest dealing with the Foraminifera and allied groups of organisms. Review articles are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信