Guanglu Yuan, Shicheng Jiang, Zi-wei Wang, Weijie Hua, Chao Yu, C. Jin, R. Lu
{"title":"跃迁偶极相在原子阿秒瞬态吸收中的作用","authors":"Guanglu Yuan, Shicheng Jiang, Zi-wei Wang, Weijie Hua, Chao Yu, C. Jin, R. Lu","doi":"10.1063/1.5124441","DOIUrl":null,"url":null,"abstract":"Based on a multilevel model considering enough bound electronic states of atoms, we theoretically study the role of the transition dipole phase (TDP) in the attosecond transient absorption (ATA) spectrum of helium in intense laser fields. By solving the stationary Schrödinger equation with B-spline basis sets, we first calculate the transition dipole moments with well-defined phases between the bound states. Using the modified multilevel model, we reveal that the TDP plays an important role in determining the spectral structures if two or more paths populate the excited states from the ground state. Our multilevel model with the accurate TDP is convenient to address the origin of atomic ATA spectral structures by freely removing or adding specific electronic states and has been justified by comparing with the ATA spectra via directly solving the time-dependent Schrödinger equation. Hopefully, further incorporating macroscopic propagation into the model will provide indepth physical insights into experimental ATA spectra.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5124441","citationCount":"6","resultStr":"{\"title\":\"The role of transition dipole phase in atomic attosecond transient absorption from the multi-level model\",\"authors\":\"Guanglu Yuan, Shicheng Jiang, Zi-wei Wang, Weijie Hua, Chao Yu, C. Jin, R. Lu\",\"doi\":\"10.1063/1.5124441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a multilevel model considering enough bound electronic states of atoms, we theoretically study the role of the transition dipole phase (TDP) in the attosecond transient absorption (ATA) spectrum of helium in intense laser fields. By solving the stationary Schrödinger equation with B-spline basis sets, we first calculate the transition dipole moments with well-defined phases between the bound states. Using the modified multilevel model, we reveal that the TDP plays an important role in determining the spectral structures if two or more paths populate the excited states from the ground state. Our multilevel model with the accurate TDP is convenient to address the origin of atomic ATA spectral structures by freely removing or adding specific electronic states and has been justified by comparing with the ATA spectra via directly solving the time-dependent Schrödinger equation. Hopefully, further incorporating macroscopic propagation into the model will provide indepth physical insights into experimental ATA spectra.\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5124441\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5124441\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5124441","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The role of transition dipole phase in atomic attosecond transient absorption from the multi-level model
Based on a multilevel model considering enough bound electronic states of atoms, we theoretically study the role of the transition dipole phase (TDP) in the attosecond transient absorption (ATA) spectrum of helium in intense laser fields. By solving the stationary Schrödinger equation with B-spline basis sets, we first calculate the transition dipole moments with well-defined phases between the bound states. Using the modified multilevel model, we reveal that the TDP plays an important role in determining the spectral structures if two or more paths populate the excited states from the ground state. Our multilevel model with the accurate TDP is convenient to address the origin of atomic ATA spectral structures by freely removing or adding specific electronic states and has been justified by comparing with the ATA spectra via directly solving the time-dependent Schrödinger equation. Hopefully, further incorporating macroscopic propagation into the model will provide indepth physical insights into experimental ATA spectra.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.