基于API调用的递归神经网络恶意软件分类

Q3 Computer Science
Chen Li, Junjun Zheng
{"title":"基于API调用的递归神经网络恶意软件分类","authors":"Chen Li, Junjun Zheng","doi":"10.13052/JCSM2245-1439.1036","DOIUrl":null,"url":null,"abstract":"Malicious software, called malware, can perform harmful actions on computer systems, which may cause economic damage and information leakage. Therefore, malware classification is meaningful and required to prevent malware attacks. Application programming interface (API) call sequences are easily observed and are good choices as features for malware classification. However, one of the main issues is how to generate a suitable feature for the algorithms of classification to achieve a high classification accuracy. Different malware sample brings API call sequence with different lengths, and these lengths may reach millions, which may cause computation cost and time complexities. Recurrent neural networks (RNNs) is one of the most versatile approaches to process time series data, which can be used to API call-based Malware calssification. In this paper, we propose a malware classification model with RNN, especially the long short-term memory (LSTM) and the gated recurrent unit (GRU), to classify variants of malware by using long-sequences of API calls. In numerical experiments, a benchmark dataset is used to illustrate the proposed approach and validate its accuracy. The numerical results show that the proposed RNN model works well on the malware classification.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"API Call-Based Malware Classification Using Recurrent Neural Networks\",\"authors\":\"Chen Li, Junjun Zheng\",\"doi\":\"10.13052/JCSM2245-1439.1036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malicious software, called malware, can perform harmful actions on computer systems, which may cause economic damage and information leakage. Therefore, malware classification is meaningful and required to prevent malware attacks. Application programming interface (API) call sequences are easily observed and are good choices as features for malware classification. However, one of the main issues is how to generate a suitable feature for the algorithms of classification to achieve a high classification accuracy. Different malware sample brings API call sequence with different lengths, and these lengths may reach millions, which may cause computation cost and time complexities. Recurrent neural networks (RNNs) is one of the most versatile approaches to process time series data, which can be used to API call-based Malware calssification. In this paper, we propose a malware classification model with RNN, especially the long short-term memory (LSTM) and the gated recurrent unit (GRU), to classify variants of malware by using long-sequences of API calls. In numerical experiments, a benchmark dataset is used to illustrate the proposed approach and validate its accuracy. The numerical results show that the proposed RNN model works well on the malware classification.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/JCSM2245-1439.1036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/JCSM2245-1439.1036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 14

摘要

被称为恶意软件的恶意软件可以在计算机系统上执行有害操作,这可能会造成经济损失和信息泄露。因此,恶意软件分类对于防止恶意软件攻击是有意义和必要的。应用程序编程接口(API)调用序列很容易被观察到,并且作为恶意软件分类的功能是很好的选择。然而,主要问题之一是如何为分类算法生成合适的特征以实现高分类精度。不同的恶意软件样本带来不同长度的API调用序列,这些长度可能达到数百万,这可能会导致计算成本和时间复杂性。递归神经网络(RNN)是处理时间序列数据最通用的方法之一,可用于API基于调用的恶意软件分类。在本文中,我们提出了一个带有RNN的恶意软件分类模型,特别是长短期记忆(LSTM)和门控递归单元(GRU),通过使用API调用的长序列对恶意软件的变体进行分类。在数值实验中,使用基准数据集来说明所提出的方法并验证其准确性。数值结果表明,所提出的RNN模型对恶意软件分类效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
API Call-Based Malware Classification Using Recurrent Neural Networks
Malicious software, called malware, can perform harmful actions on computer systems, which may cause economic damage and information leakage. Therefore, malware classification is meaningful and required to prevent malware attacks. Application programming interface (API) call sequences are easily observed and are good choices as features for malware classification. However, one of the main issues is how to generate a suitable feature for the algorithms of classification to achieve a high classification accuracy. Different malware sample brings API call sequence with different lengths, and these lengths may reach millions, which may cause computation cost and time complexities. Recurrent neural networks (RNNs) is one of the most versatile approaches to process time series data, which can be used to API call-based Malware calssification. In this paper, we propose a malware classification model with RNN, especially the long short-term memory (LSTM) and the gated recurrent unit (GRU), to classify variants of malware by using long-sequences of API calls. In numerical experiments, a benchmark dataset is used to illustrate the proposed approach and validate its accuracy. The numerical results show that the proposed RNN model works well on the malware classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信