Saeid Taleghanidoozdoozan, Linlin Xu, David A Clausi
{"title":"基于条件随机场模型的紧凑偏振成像候选漏油检测","authors":"Saeid Taleghanidoozdoozan, Linlin Xu, David A Clausi","doi":"10.1080/07038992.2022.2055534","DOIUrl":null,"url":null,"abstract":"Abstract Although the compact polarimetric (CP) synthetic aperture radar (SAR) mode of the RADARSAT Constellation Mission (RCM) offers new opportunities for oil spill candidate detection, there has not been an efficient machine learning model explicitly designed to utilize this new CP SAR data for improved detection. This paper presents a conditional random field model based on the Wishart mixture model (CRF-WMM) to detect oil spill candidates in CP SAR imagery. First, a “Wishart mixture model” (WMM) is designed as the unary potential in the CRF-WMM to address the class-dependent information of oil spill candidates and oil free water. Second, we introduce a new similarity measure based on CP statistics designed as a pairwise potential in the CRF-WMM model so that pixels with strong spatial connections have the same class label. Finally, we investigate three different optimization approaches to solve the resulting maximum a posterior (MAP) problem, namely iterated conditional modes (ICM), simulated annealing (SA), and graph cuts (GC). The results show that our proposed CRF-WMM model can delineate oil spill candidates better than the traditional CRF approaches, and that the GC algorithm provides the best optimization.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"425 - 440"},"PeriodicalIF":2.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil Spill Candidate Detection Using a Conditional Random Field Model on Simulated Compact Polarimetric Imagery\",\"authors\":\"Saeid Taleghanidoozdoozan, Linlin Xu, David A Clausi\",\"doi\":\"10.1080/07038992.2022.2055534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although the compact polarimetric (CP) synthetic aperture radar (SAR) mode of the RADARSAT Constellation Mission (RCM) offers new opportunities for oil spill candidate detection, there has not been an efficient machine learning model explicitly designed to utilize this new CP SAR data for improved detection. This paper presents a conditional random field model based on the Wishart mixture model (CRF-WMM) to detect oil spill candidates in CP SAR imagery. First, a “Wishart mixture model” (WMM) is designed as the unary potential in the CRF-WMM to address the class-dependent information of oil spill candidates and oil free water. Second, we introduce a new similarity measure based on CP statistics designed as a pairwise potential in the CRF-WMM model so that pixels with strong spatial connections have the same class label. Finally, we investigate three different optimization approaches to solve the resulting maximum a posterior (MAP) problem, namely iterated conditional modes (ICM), simulated annealing (SA), and graph cuts (GC). The results show that our proposed CRF-WMM model can delineate oil spill candidates better than the traditional CRF approaches, and that the GC algorithm provides the best optimization.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"425 - 440\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2022.2055534\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2055534","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Oil Spill Candidate Detection Using a Conditional Random Field Model on Simulated Compact Polarimetric Imagery
Abstract Although the compact polarimetric (CP) synthetic aperture radar (SAR) mode of the RADARSAT Constellation Mission (RCM) offers new opportunities for oil spill candidate detection, there has not been an efficient machine learning model explicitly designed to utilize this new CP SAR data for improved detection. This paper presents a conditional random field model based on the Wishart mixture model (CRF-WMM) to detect oil spill candidates in CP SAR imagery. First, a “Wishart mixture model” (WMM) is designed as the unary potential in the CRF-WMM to address the class-dependent information of oil spill candidates and oil free water. Second, we introduce a new similarity measure based on CP statistics designed as a pairwise potential in the CRF-WMM model so that pixels with strong spatial connections have the same class label. Finally, we investigate three different optimization approaches to solve the resulting maximum a posterior (MAP) problem, namely iterated conditional modes (ICM), simulated annealing (SA), and graph cuts (GC). The results show that our proposed CRF-WMM model can delineate oil spill candidates better than the traditional CRF approaches, and that the GC algorithm provides the best optimization.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.