以Clifford环面为界的𝕊3上的Neumann问题

IF 2.1 2区 数学 Q1 MATHEMATICS
Jeffrey S. Case, Eric Chen, Yi Wang, Paul Yang, Po-Lam Yung
{"title":"以Clifford环面为界的𝕊3上的Neumann问题","authors":"Jeffrey S. Case, Eric Chen, Yi Wang, Paul Yang, Po-Lam Yung","doi":"10.1515/ans-2022-0072","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the solution of the Neumann problem associated with the CR Yamabe operator on a subset Ω \\Omega of the CR manifold S 3 {{\\mathbb{S}}}^{3} bounded by the Clifford torus Σ \\Sigma is discussed. The Yamabe-type problem of finding a contact form on Ω \\Omega which has zero Tanaka-Webster scalar curvature and for which Σ \\Sigma has a constant p p -mean curvature is also discussed.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Neumann problem on the domain in 𝕊3 bounded by the Clifford torus\",\"authors\":\"Jeffrey S. Case, Eric Chen, Yi Wang, Paul Yang, Po-Lam Yung\",\"doi\":\"10.1515/ans-2022-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the solution of the Neumann problem associated with the CR Yamabe operator on a subset Ω \\\\Omega of the CR manifold S 3 {{\\\\mathbb{S}}}^{3} bounded by the Clifford torus Σ \\\\Sigma is discussed. The Yamabe-type problem of finding a contact form on Ω \\\\Omega which has zero Tanaka-Webster scalar curvature and for which Σ \\\\Sigma has a constant p p -mean curvature is also discussed.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了以Clifford环面Σ \Sigma为界的CR流形s3 {{\mathbb{S}}} ^{3}子集Ω \Omega上与CR Yamabe算子相关的Neumann问题的解。讨论了在Ω \Omega上寻找具有零Tanaka-Webster标量曲率且Σ \Sigma具有恒定的p -平均曲率的接触形式的yamabe型问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Neumann problem on the domain in 𝕊3 bounded by the Clifford torus
Abstract In this study, the solution of the Neumann problem associated with the CR Yamabe operator on a subset Ω \Omega of the CR manifold S 3 {{\mathbb{S}}}^{3} bounded by the Clifford torus Σ \Sigma is discussed. The Yamabe-type problem of finding a contact form on Ω \Omega which has zero Tanaka-Webster scalar curvature and for which Σ \Sigma has a constant p p -mean curvature is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信