{"title":"弹性地基上弹性夹层圆柱壳的振动特性分析","authors":"Bin Li, Tao Fu","doi":"10.1177/10996362221101139","DOIUrl":null,"url":null,"abstract":"The main objective of this research work is focused on the vibration analysis of auxetic sandwich cylindrical shell structures resting on an elastic foundation. In the analysis, the sandwich shell structure is composed of three layers in which the middle layer consists of auxetic material with a negative Poisson’s ratio, and the two skin layers are isotropic homogeneous materials. The motion equation is extracted according to the first-order shear deformation theory (FSDT) and the Hamilton principle. The governing equations of coupled partial differential equations are solved by the generalized differential quadrature (GDQ) method, and the natural frequencies are determined. By comparing the experimental results with the numerical results calculated by commercial finite element software, the validity of the proposed theoretical model is verified. Finally, the influences of geometrical parameters and elastic foundation on the vibration behavior of sandwich shell structures have been investigated.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"24 1","pages":"1865 - 1882"},"PeriodicalIF":3.5000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of vibration characteristics of auxetic sandwich cylindrical shells resting on elastic foundation\",\"authors\":\"Bin Li, Tao Fu\",\"doi\":\"10.1177/10996362221101139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this research work is focused on the vibration analysis of auxetic sandwich cylindrical shell structures resting on an elastic foundation. In the analysis, the sandwich shell structure is composed of three layers in which the middle layer consists of auxetic material with a negative Poisson’s ratio, and the two skin layers are isotropic homogeneous materials. The motion equation is extracted according to the first-order shear deformation theory (FSDT) and the Hamilton principle. The governing equations of coupled partial differential equations are solved by the generalized differential quadrature (GDQ) method, and the natural frequencies are determined. By comparing the experimental results with the numerical results calculated by commercial finite element software, the validity of the proposed theoretical model is verified. Finally, the influences of geometrical parameters and elastic foundation on the vibration behavior of sandwich shell structures have been investigated.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"24 1\",\"pages\":\"1865 - 1882\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221101139\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221101139","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analysis of vibration characteristics of auxetic sandwich cylindrical shells resting on elastic foundation
The main objective of this research work is focused on the vibration analysis of auxetic sandwich cylindrical shell structures resting on an elastic foundation. In the analysis, the sandwich shell structure is composed of three layers in which the middle layer consists of auxetic material with a negative Poisson’s ratio, and the two skin layers are isotropic homogeneous materials. The motion equation is extracted according to the first-order shear deformation theory (FSDT) and the Hamilton principle. The governing equations of coupled partial differential equations are solved by the generalized differential quadrature (GDQ) method, and the natural frequencies are determined. By comparing the experimental results with the numerical results calculated by commercial finite element software, the validity of the proposed theoretical model is verified. Finally, the influences of geometrical parameters and elastic foundation on the vibration behavior of sandwich shell structures have been investigated.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).