{"title":"算子的广义连续框架","authors":"Chander Shekhar, Sunayana Bhati, G. S. Rathore","doi":"10.22130/SCMA.2018.97329.523","DOIUrl":null,"url":null,"abstract":"In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ with respect to $ mu $ is given. Also, a sufficient condition for a generalized continuous $K$-frame is given. Further, among other results, we prove that generalized continuous $K$-frames are invariant under a linear homeomorphism. Finally, keeping in mind the importance of perturbation theory in various branches of applied mathematics, we study perturbation of $K$-frames and obtain conditions for the stability of generalized continuous $K$-frames.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Continuous Frames for Operators\",\"authors\":\"Chander Shekhar, Sunayana Bhati, G. S. Rathore\",\"doi\":\"10.22130/SCMA.2018.97329.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ with respect to $ mu $ is given. Also, a sufficient condition for a generalized continuous $K$-frame is given. Further, among other results, we prove that generalized continuous $K$-frames are invariant under a linear homeomorphism. Finally, keeping in mind the importance of perturbation theory in various branches of applied mathematics, we study perturbation of $K$-frames and obtain conditions for the stability of generalized continuous $K$-frames.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2018.97329.523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2018.97329.523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
本文定义了Hilbert空间中广义连续K-坐标系的概念。通过实例证明了广义连续K -坐标系的存在性。得到了广义连续$K$-坐标系在其坐标系算子上存在的充分必要条件,并给出了$ mathcal{H} $关于$ mu $的广义连续$K$-坐标系的刻画。同时,给出了广义连续$K$坐标系的一个充分条件。进一步证明了广义连续$K$-帧在线性同胚下是不变的。最后,考虑到微扰理论在应用数学各个分支中的重要性,我们研究了K -框架的微扰,得到了广义连续K -框架稳定性的条件。
In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ with respect to $ mu $ is given. Also, a sufficient condition for a generalized continuous $K$-frame is given. Further, among other results, we prove that generalized continuous $K$-frames are invariant under a linear homeomorphism. Finally, keeping in mind the importance of perturbation theory in various branches of applied mathematics, we study perturbation of $K$-frames and obtain conditions for the stability of generalized continuous $K$-frames.