一种四月级算法,用于显示学术价值与学生毕业的关系:数据挖掘

S. L. Ginting
{"title":"一种四月级算法,用于显示学术价值与学生毕业的关系:数据挖掘","authors":"S. L. Ginting","doi":"10.34010/KOMPUTIKA.V6I2.1706","DOIUrl":null,"url":null,"abstract":"Jumlah data mahasiswa yang bertambah setiap tahun tentu mengakibatkan penumpukan data di perguruan tinggi. Dibutuhkan suatu teknik pengolahan data agar data yang menumpuk tidak sulit untuk dianalisa. Riset ini dilakukan untuk menganalisis hubungan antara data akademik mahasiswa dengan kategori kelulusan. Teknik pengolahan yang bervariasi perlu disesuaikan dengan kebutuhan analisis data, metode yang digunakan dalam riset ini adalah algoritma Apriori, yaitu algoritma Asosiasi yang menggunakan pengetahuan frekuensi atribut yang telah diketahui sebelumnya untuk memproses informasi selanjutnya. Riset ini dilakukan dengan memanfaatkan data akademik dan data kelulusan mahasiswa, yaitu dengan mencari persentase hubungan antara nilai mata kuliah mahasiswa terhadap kategori kelulusan menggunakan data mining. Kategori kelulusan diukur dari lama studi mahasiswa dan IPK, sedangkan data akademik yang digunakan adalah nilai mata kuliah mahasiswa. Informasi yang ditampilkan berupa nilai support (Nilai Penunjang) dan confidence (Nilai Kepastian).","PeriodicalId":52813,"journal":{"name":"Komputika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algoritma Apriori untuk Menampilkan Korelasi Nilai Akademik dengan Kelulusan Mahasiswa: Data Mining\",\"authors\":\"S. L. Ginting\",\"doi\":\"10.34010/KOMPUTIKA.V6I2.1706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jumlah data mahasiswa yang bertambah setiap tahun tentu mengakibatkan penumpukan data di perguruan tinggi. Dibutuhkan suatu teknik pengolahan data agar data yang menumpuk tidak sulit untuk dianalisa. Riset ini dilakukan untuk menganalisis hubungan antara data akademik mahasiswa dengan kategori kelulusan. Teknik pengolahan yang bervariasi perlu disesuaikan dengan kebutuhan analisis data, metode yang digunakan dalam riset ini adalah algoritma Apriori, yaitu algoritma Asosiasi yang menggunakan pengetahuan frekuensi atribut yang telah diketahui sebelumnya untuk memproses informasi selanjutnya. Riset ini dilakukan dengan memanfaatkan data akademik dan data kelulusan mahasiswa, yaitu dengan mencari persentase hubungan antara nilai mata kuliah mahasiswa terhadap kategori kelulusan menggunakan data mining. Kategori kelulusan diukur dari lama studi mahasiswa dan IPK, sedangkan data akademik yang digunakan adalah nilai mata kuliah mahasiswa. Informasi yang ditampilkan berupa nilai support (Nilai Penunjang) dan confidence (Nilai Kepastian).\",\"PeriodicalId\":52813,\"journal\":{\"name\":\"Komputika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Komputika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34010/KOMPUTIKA.V6I2.1706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/KOMPUTIKA.V6I2.1706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

每年增加的学生数据量肯定会导致大学里的数据收集。需要一种数据处理技术,使得聚集的数据不难分析。本研究旨在分析学生学业数据与资格类别之间的关系。各种处理技术需要适应数据分析的需要,本研究中使用的方法是Apriori算法,这是一种利用先前已知的属性频率知识来处理进一步信息的关联算法。这项研究是使用学术数据和学生资格数据进行的,即通过使用挖掘数据寻找学生的学术成绩与资格类别之间的关系百分比。毕业类别是根据学生和IPK的旧研究来衡量的,而使用的学术数据是学生的眼睛值。显示的信息是支持值和置信度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algoritma Apriori untuk Menampilkan Korelasi Nilai Akademik dengan Kelulusan Mahasiswa: Data Mining
Jumlah data mahasiswa yang bertambah setiap tahun tentu mengakibatkan penumpukan data di perguruan tinggi. Dibutuhkan suatu teknik pengolahan data agar data yang menumpuk tidak sulit untuk dianalisa. Riset ini dilakukan untuk menganalisis hubungan antara data akademik mahasiswa dengan kategori kelulusan. Teknik pengolahan yang bervariasi perlu disesuaikan dengan kebutuhan analisis data, metode yang digunakan dalam riset ini adalah algoritma Apriori, yaitu algoritma Asosiasi yang menggunakan pengetahuan frekuensi atribut yang telah diketahui sebelumnya untuk memproses informasi selanjutnya. Riset ini dilakukan dengan memanfaatkan data akademik dan data kelulusan mahasiswa, yaitu dengan mencari persentase hubungan antara nilai mata kuliah mahasiswa terhadap kategori kelulusan menggunakan data mining. Kategori kelulusan diukur dari lama studi mahasiswa dan IPK, sedangkan data akademik yang digunakan adalah nilai mata kuliah mahasiswa. Informasi yang ditampilkan berupa nilai support (Nilai Penunjang) dan confidence (Nilai Kepastian).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信