F. Khelfaoui, Mohammed Athmane Yallese, S. Boucherit, Hanane Boumaaza, Nourdine Ouelaa
{"title":"DF和GRA法最小化AISI D3钢间歇车削中的刀具磨损、切削温度和表面粗糙度","authors":"F. Khelfaoui, Mohammed Athmane Yallese, S. Boucherit, Hanane Boumaaza, Nourdine Ouelaa","doi":"10.24874/ti.1395.10.22.01","DOIUrl":null,"url":null,"abstract":"Intermittent turning (IT) is characterized by a different context than continuous turning (CT). The cutting tool is shocked each time it goes off-load and engages a new surface. This interruption causes severe cutting conditions, which fatally affect the performance parameters. The purpose of this study is to assess the effects of four cutting factors, tool nose radius (r), cutting speed (Vc), feed rate (f), and depth of cut (ap), on the following output performance parameters: surface roughness (Ra), cutting temperature (T°), and cutting tool wear (VB) during turning (IT) AISI D3 cold work tool steel. A triple CVD (AI2O3/TiC/TiCN)-coated carbide cutting tool was used. A Taguchi L9 (3^4) experimental design was adopted for carrying out the experiments in intermittent turning. To improve the performance parameters based on three (3) highly particular scenarios that fulfill industrial criteria, the desirability function (DF) and the grey relational analysis method (GRA) were used. Finally, the optimization findings of the two strategies were compared in order to evaluate the performance of each method.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing Tool Wear, Cutting Temperature and Surface Roughness in the Intermittent Turning of AISI D3 Steel Using the DF and GRA Method\",\"authors\":\"F. Khelfaoui, Mohammed Athmane Yallese, S. Boucherit, Hanane Boumaaza, Nourdine Ouelaa\",\"doi\":\"10.24874/ti.1395.10.22.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermittent turning (IT) is characterized by a different context than continuous turning (CT). The cutting tool is shocked each time it goes off-load and engages a new surface. This interruption causes severe cutting conditions, which fatally affect the performance parameters. The purpose of this study is to assess the effects of four cutting factors, tool nose radius (r), cutting speed (Vc), feed rate (f), and depth of cut (ap), on the following output performance parameters: surface roughness (Ra), cutting temperature (T°), and cutting tool wear (VB) during turning (IT) AISI D3 cold work tool steel. A triple CVD (AI2O3/TiC/TiCN)-coated carbide cutting tool was used. A Taguchi L9 (3^4) experimental design was adopted for carrying out the experiments in intermittent turning. To improve the performance parameters based on three (3) highly particular scenarios that fulfill industrial criteria, the desirability function (DF) and the grey relational analysis method (GRA) were used. Finally, the optimization findings of the two strategies were compared in order to evaluate the performance of each method.\",\"PeriodicalId\":23320,\"journal\":{\"name\":\"Tribology in Industry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/ti.1395.10.22.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/ti.1395.10.22.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Minimizing Tool Wear, Cutting Temperature and Surface Roughness in the Intermittent Turning of AISI D3 Steel Using the DF and GRA Method
Intermittent turning (IT) is characterized by a different context than continuous turning (CT). The cutting tool is shocked each time it goes off-load and engages a new surface. This interruption causes severe cutting conditions, which fatally affect the performance parameters. The purpose of this study is to assess the effects of four cutting factors, tool nose radius (r), cutting speed (Vc), feed rate (f), and depth of cut (ap), on the following output performance parameters: surface roughness (Ra), cutting temperature (T°), and cutting tool wear (VB) during turning (IT) AISI D3 cold work tool steel. A triple CVD (AI2O3/TiC/TiCN)-coated carbide cutting tool was used. A Taguchi L9 (3^4) experimental design was adopted for carrying out the experiments in intermittent turning. To improve the performance parameters based on three (3) highly particular scenarios that fulfill industrial criteria, the desirability function (DF) and the grey relational analysis method (GRA) were used. Finally, the optimization findings of the two strategies were compared in order to evaluate the performance of each method.
期刊介绍:
he aim of Tribology in Industry journal is to publish quality experimental and theoretical research papers in fields of the science of friction, wear and lubrication and any closely related fields. The scope includes all aspects of materials science, surface science, applied physics and mechanical engineering which relate directly to the subjects of wear and friction. Topical areas include, but are not limited to: Friction, Wear, Lubricants, Surface characterization, Surface engineering, Nanotribology, Contact mechanics, Coatings, Alloys, Composites, Tribological design, Biotribology, Green Tribology.