若干和积问题的渐近公式

Q2 Mathematics
I. Shkredov
{"title":"若干和积问题的渐近公式","authors":"I. Shkredov","doi":"10.1090/MOSC/283","DOIUrl":null,"url":null,"abstract":"In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\\mathbf{F}_p$, as well as the growth result in ${\\rm SL}_2 (\\mathbf{F}_p)$ due to Helfgott. Here some of our applications: \n$\\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\\,a_i, a'_i\\in A$, $A$ is an arbitrary subset of $\\mathbf{F}_p$, \n$\\bullet~$ a new effective bound for multilinear exponential sums of Bourgain, \n$\\bullet~$ an asymptotic analogue of the Balog--Wooley decomposition theorem, \n$\\bullet~$ growth of $p_1(b) + 1/(a+p_2 (b))$, where $a,b$ runs over two subsets of $\\mathbf{F}_p$, $p_1,p_2 \\in \\mathbf{F}_p [x]$ are two non--constant polynomials, \n$\\bullet~$ new bounds for some exponential sums with multiplicative and additive characters.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/MOSC/283","citationCount":"43","resultStr":"{\"title\":\"On asymptotic formulae in some sum–product questions\",\"authors\":\"I. Shkredov\",\"doi\":\"10.1090/MOSC/283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\\\\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\\\\mathbf{F}_p$, as well as the growth result in ${\\\\rm SL}_2 (\\\\mathbf{F}_p)$ due to Helfgott. Here some of our applications: \\n$\\\\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\\\\,a_i, a'_i\\\\in A$, $A$ is an arbitrary subset of $\\\\mathbf{F}_p$, \\n$\\\\bullet~$ a new effective bound for multilinear exponential sums of Bourgain, \\n$\\\\bullet~$ an asymptotic analogue of the Balog--Wooley decomposition theorem, \\n$\\\\bullet~$ growth of $p_1(b) + 1/(a+p_2 (b))$, where $a,b$ runs over two subsets of $\\\\mathbf{F}_p$, $p_1,p_2 \\\\in \\\\mathbf{F}_p [x]$ are two non--constant polynomials, \\n$\\\\bullet~$ new bounds for some exponential sums with multiplicative and additive characters.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/MOSC/283\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MOSC/283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MOSC/283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 43

摘要

本文给出了素数域$\mathbf上和积现象的一系列渐近公式{F}_p$。在证明中,我们使用$\mathbf中常见的关联定理{F}_p$,以及${\rm SL}_2(\mathbf{F}_p)应付给Helfgott的美元。这里我们的一些应用:$\bullt~$方程$(a_1-a_2)(a_3-a_4)=(a'_1-a'_2)(a'_3-a'_4)$,$\,a_i,a'_i\在a$中的解个数的一个新界,$a$是$\mathbf的任意子集{F}_p$,$\bullt~$Bourgain的多线性指数和的一个新的有效界,$\bollt~$Balog-Wolley分解定理的渐近类似,$\pullt~$p_1(b)+1/(a+p2(b))$的增长,其中$a,b$在$\mathbf的两个子集上运行{F}_p$,$p_1,p_2\in\mathbf{F}_p[x]$是两个非常多项式,$\bullt~$是一些具有乘法和加法性质的指数和的新界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asymptotic formulae in some sum–product questions
In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_p$, $\bullet~$ a new effective bound for multilinear exponential sums of Bourgain, $\bullet~$ an asymptotic analogue of the Balog--Wooley decomposition theorem, $\bullet~$ growth of $p_1(b) + 1/(a+p_2 (b))$, where $a,b$ runs over two subsets of $\mathbf{F}_p$, $p_1,p_2 \in \mathbf{F}_p [x]$ are two non--constant polynomials, $\bullet~$ new bounds for some exponential sums with multiplicative and additive characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信