{"title":"石英中E1′中心的剂量响应","authors":"S. Toyoda, Mana Amimoto","doi":"10.2478/geochr-2020-0037","DOIUrl":null,"url":null,"abstract":"Abstract The E1’ centre is one of the most common paramagnetic defects observed by electron spin resonance (ESR) in natural quartz, the formation of which is, however, quite complicated. The dose response to gamma ray irradiation of the E1’ centre in natural quartz was systematically investigated in the present study to find that its dose response depends on the heating conditions of the sample before irradiation. The signal intensity decreases on irradiation when quartz has been heated up to 300°C, while it increases when heated above 400°C. The phenomena can be explained by the electronic processes that heating supplies electronic holes to the oxygen vacancies while gamma ray irradiation supplies electrons.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"48 1","pages":"191 - 196"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dose Response of the E1’ Centre in Quartz\",\"authors\":\"S. Toyoda, Mana Amimoto\",\"doi\":\"10.2478/geochr-2020-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The E1’ centre is one of the most common paramagnetic defects observed by electron spin resonance (ESR) in natural quartz, the formation of which is, however, quite complicated. The dose response to gamma ray irradiation of the E1’ centre in natural quartz was systematically investigated in the present study to find that its dose response depends on the heating conditions of the sample before irradiation. The signal intensity decreases on irradiation when quartz has been heated up to 300°C, while it increases when heated above 400°C. The phenomena can be explained by the electronic processes that heating supplies electronic holes to the oxygen vacancies while gamma ray irradiation supplies electrons.\",\"PeriodicalId\":50421,\"journal\":{\"name\":\"Geochronometria\",\"volume\":\"48 1\",\"pages\":\"191 - 196\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochronometria\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2478/geochr-2020-0037\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2478/geochr-2020-0037","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Abstract The E1’ centre is one of the most common paramagnetic defects observed by electron spin resonance (ESR) in natural quartz, the formation of which is, however, quite complicated. The dose response to gamma ray irradiation of the E1’ centre in natural quartz was systematically investigated in the present study to find that its dose response depends on the heating conditions of the sample before irradiation. The signal intensity decreases on irradiation when quartz has been heated up to 300°C, while it increases when heated above 400°C. The phenomena can be explained by the electronic processes that heating supplies electronic holes to the oxygen vacancies while gamma ray irradiation supplies electrons.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.