{"title":"与Weil束相关的g结构的延长及其应用","authors":"P. M. Kouotchop Wamba, G.F. Wankap Nono, A. Ntyam","doi":"10.17398/2605-5686.37.1.111","DOIUrl":null,"url":null,"abstract":"Let M be a smooth manifold of dimension m ≥ 1 and P be a G-structure on M , where G is a Lie subgroup of linear group GL(m). In [8], it has been defined the prolongations of G-structures related to tangent functor of higher order and some properties have been established. The aim of this paper is to generalize these prolongations to a Weil bundles. More precisely, we study the prolongations of G-structures on a manifold M , to its Weil bundle TAM (A is a Weil algebra) and we establish some properties. In particular, we characterize the canonical tensor fields induced by the A-prolongation of some classical G-structures.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prolongations of G-structures related to Weil bundles and some applications\",\"authors\":\"P. M. Kouotchop Wamba, G.F. Wankap Nono, A. Ntyam\",\"doi\":\"10.17398/2605-5686.37.1.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M be a smooth manifold of dimension m ≥ 1 and P be a G-structure on M , where G is a Lie subgroup of linear group GL(m). In [8], it has been defined the prolongations of G-structures related to tangent functor of higher order and some properties have been established. The aim of this paper is to generalize these prolongations to a Weil bundles. More precisely, we study the prolongations of G-structures on a manifold M , to its Weil bundle TAM (A is a Weil algebra) and we establish some properties. In particular, we characterize the canonical tensor fields induced by the A-prolongation of some classical G-structures.\",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.37.1.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.37.1.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Prolongations of G-structures related to Weil bundles and some applications
Let M be a smooth manifold of dimension m ≥ 1 and P be a G-structure on M , where G is a Lie subgroup of linear group GL(m). In [8], it has been defined the prolongations of G-structures related to tangent functor of higher order and some properties have been established. The aim of this paper is to generalize these prolongations to a Weil bundles. More precisely, we study the prolongations of G-structures on a manifold M , to its Weil bundle TAM (A is a Weil algebra) and we establish some properties. In particular, we characterize the canonical tensor fields induced by the A-prolongation of some classical G-structures.