Alizée Koszulinski, J. Sandoval, T. Vendeuvre, S. Zeghloul, M. Laribi
{"title":"具有视觉耦合的脊柱手术机器人操作平台的开发与实验","authors":"Alizée Koszulinski, J. Sandoval, T. Vendeuvre, S. Zeghloul, M. Laribi","doi":"10.1115/1.4054550","DOIUrl":null,"url":null,"abstract":"\n In this paper, a novel surgical robotic platform intended to assist surgeons in cervical spine surgery is presented. The purpose of this surgery is to treat cervical spine instabilities. The surgical procedure requires drilling into specific region of the vertebrae in order to attach spinal implants and ensure a normal spacing between each vertebra. In this context, the proposed robotic platform allows to control and restrict surgeon's movements to a specific drilling direction set by the surgeon. The current platform is composed of a collaborative robot with 7 DoF equipped with a drilling tool and directly comanipulated by the surgeon. A motion capture system, as an exteroceptive sensor device, provides the robot controller with the movement data of the vertebra to be drilled. Robot Operating System (ROS) framework is used to enable real-time communication between the collaborative robot and the visual exteroceptive device. In addition, an implemented compliance control program allows to enhance the safety aspect of the robotic platform. Indeed, the collaborative robot follow the patient's movements while constraining the tool movements to an optimal trajectory as well as a limited drilling depth selected by the surgeon. The robot's elbow movements are also restricted by exploiting the null-space in order to avoid collisions with other equipment or medical team members. Experimental drilling trials have been performed by an orthopedic surgeon to validate the usefulness and different functionalities of the developed robotic platform, and provide that a collaborative robot can comply with spine surgery procedure.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comanipulation Robotic Platform for Spine Surgery with Exteroceptive Visual Coupling: Development and Experimentation\",\"authors\":\"Alizée Koszulinski, J. Sandoval, T. Vendeuvre, S. Zeghloul, M. Laribi\",\"doi\":\"10.1115/1.4054550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a novel surgical robotic platform intended to assist surgeons in cervical spine surgery is presented. The purpose of this surgery is to treat cervical spine instabilities. The surgical procedure requires drilling into specific region of the vertebrae in order to attach spinal implants and ensure a normal spacing between each vertebra. In this context, the proposed robotic platform allows to control and restrict surgeon's movements to a specific drilling direction set by the surgeon. The current platform is composed of a collaborative robot with 7 DoF equipped with a drilling tool and directly comanipulated by the surgeon. A motion capture system, as an exteroceptive sensor device, provides the robot controller with the movement data of the vertebra to be drilled. Robot Operating System (ROS) framework is used to enable real-time communication between the collaborative robot and the visual exteroceptive device. In addition, an implemented compliance control program allows to enhance the safety aspect of the robotic platform. Indeed, the collaborative robot follow the patient's movements while constraining the tool movements to an optimal trajectory as well as a limited drilling depth selected by the surgeon. The robot's elbow movements are also restricted by exploiting the null-space in order to avoid collisions with other equipment or medical team members. Experimental drilling trials have been performed by an orthopedic surgeon to validate the usefulness and different functionalities of the developed robotic platform, and provide that a collaborative robot can comply with spine surgery procedure.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054550\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054550","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comanipulation Robotic Platform for Spine Surgery with Exteroceptive Visual Coupling: Development and Experimentation
In this paper, a novel surgical robotic platform intended to assist surgeons in cervical spine surgery is presented. The purpose of this surgery is to treat cervical spine instabilities. The surgical procedure requires drilling into specific region of the vertebrae in order to attach spinal implants and ensure a normal spacing between each vertebra. In this context, the proposed robotic platform allows to control and restrict surgeon's movements to a specific drilling direction set by the surgeon. The current platform is composed of a collaborative robot with 7 DoF equipped with a drilling tool and directly comanipulated by the surgeon. A motion capture system, as an exteroceptive sensor device, provides the robot controller with the movement data of the vertebra to be drilled. Robot Operating System (ROS) framework is used to enable real-time communication between the collaborative robot and the visual exteroceptive device. In addition, an implemented compliance control program allows to enhance the safety aspect of the robotic platform. Indeed, the collaborative robot follow the patient's movements while constraining the tool movements to an optimal trajectory as well as a limited drilling depth selected by the surgeon. The robot's elbow movements are also restricted by exploiting the null-space in order to avoid collisions with other equipment or medical team members. Experimental drilling trials have been performed by an orthopedic surgeon to validate the usefulness and different functionalities of the developed robotic platform, and provide that a collaborative robot can comply with spine surgery procedure.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.