{"title":"基于特征集合的高分辨率遥感图像有效分类","authors":"Gladima Nisia T, R. S","doi":"10.1080/22797254.2022.2075794","DOIUrl":null,"url":null,"abstract":"ABSTRACT Extracting feature is one of the important methods in classification of high-resolution remote sensing image. A good feature set can result in an efficient classification process. Recent trend moves in extracting the features from the image using neural networks with no human intervention. Our approach uses the deep convolutional neural network for extracting deep features. To still rise the efficiency of the extracted features, the proposed system combines the deep features with other features like Gabor features and novel reformed local binary pattern features. The features are combined and sent for classification. Then, the classification process is done to classify the images. The proposed system introduces two novel ideas, in its feature extraction implementation, namely (1) initialisation of filter values for the CNN and (2) change in local binary pattern feature extraction process. The experimental results are carried out with LISS IV Madurai image, and evaluation is done for the verification of the results. It is found that the system proposed produces good results when compared with other existing methods.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"55 1","pages":"326 - 337"},"PeriodicalIF":3.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensemble of features for efficient classification of high-resolution remote sensing image\",\"authors\":\"Gladima Nisia T, R. S\",\"doi\":\"10.1080/22797254.2022.2075794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Extracting feature is one of the important methods in classification of high-resolution remote sensing image. A good feature set can result in an efficient classification process. Recent trend moves in extracting the features from the image using neural networks with no human intervention. Our approach uses the deep convolutional neural network for extracting deep features. To still rise the efficiency of the extracted features, the proposed system combines the deep features with other features like Gabor features and novel reformed local binary pattern features. The features are combined and sent for classification. Then, the classification process is done to classify the images. The proposed system introduces two novel ideas, in its feature extraction implementation, namely (1) initialisation of filter values for the CNN and (2) change in local binary pattern feature extraction process. The experimental results are carried out with LISS IV Madurai image, and evaluation is done for the verification of the results. It is found that the system proposed produces good results when compared with other existing methods.\",\"PeriodicalId\":49077,\"journal\":{\"name\":\"European Journal of Remote Sensing\",\"volume\":\"55 1\",\"pages\":\"326 - 337\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/22797254.2022.2075794\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2022.2075794","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1
摘要
特征提取是高分辨率遥感图像分类的重要方法之一。一个好的特征集可以产生一个高效的分类过程。最近的趋势是在没有人为干预的情况下使用神经网络从图像中提取特征。我们的方法使用深度卷积神经网络来提取深度特征。为了提高提取特征的效率,该系统将深度特征与Gabor特征和新的改进的局部二值模式特征相结合。这些特征被组合并发送给分类。然后,对图像进行分类处理。该系统在特征提取实现中引入了两个新颖的思路,即(1)CNN滤波器值的初始化和(2)局部二值模式特征提取过程的改变。实验结果用LISS IV Madurai图像进行了验证,并对结果进行了评价。结果表明,与现有的方法相比,该系统取得了较好的效果。
Ensemble of features for efficient classification of high-resolution remote sensing image
ABSTRACT Extracting feature is one of the important methods in classification of high-resolution remote sensing image. A good feature set can result in an efficient classification process. Recent trend moves in extracting the features from the image using neural networks with no human intervention. Our approach uses the deep convolutional neural network for extracting deep features. To still rise the efficiency of the extracted features, the proposed system combines the deep features with other features like Gabor features and novel reformed local binary pattern features. The features are combined and sent for classification. Then, the classification process is done to classify the images. The proposed system introduces two novel ideas, in its feature extraction implementation, namely (1) initialisation of filter values for the CNN and (2) change in local binary pattern feature extraction process. The experimental results are carried out with LISS IV Madurai image, and evaluation is done for the verification of the results. It is found that the system proposed produces good results when compared with other existing methods.
期刊介绍:
European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include:
-land use/land cover
-geology, earth and geoscience
-agriculture and forestry
-geography and landscape
-ecology and environmental science
-support to land management
-hydrology and water resources
-atmosphere and meteorology
-oceanography
-new sensor systems, missions and software/algorithms
-pre processing/calibration
-classifications
-time series/change analysis
-data integration/merging/fusion
-image processing and analysis
-modelling
European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.