最小分割到平面子图:CG:SHOP挑战2022

Q2 Mathematics
S. Fekete, Phillip Keldenich, Dominik Krupke, S. Schirra
{"title":"最小分割到平面子图:CG:SHOP挑战2022","authors":"S. Fekete, Phillip Keldenich, Dominik Krupke, S. Schirra","doi":"10.1145/3604907","DOIUrl":null,"url":null,"abstract":"We give an overview of the 2022 Computational Geometry Challenge targeting the problem Minimum Partition into Plane Subsets, which consists of partitioning a given set of line segments into a minimum number of non-crossing subsets.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimum Partition into Plane Subgraphs: The CG:SHOP Challenge 2022\",\"authors\":\"S. Fekete, Phillip Keldenich, Dominik Krupke, S. Schirra\",\"doi\":\"10.1145/3604907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an overview of the 2022 Computational Geometry Challenge targeting the problem Minimum Partition into Plane Subsets, which consists of partitioning a given set of line segments into a minimum number of non-crossing subsets.\",\"PeriodicalId\":53707,\"journal\":{\"name\":\"Journal of Experimental Algorithmics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Algorithmics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

我们概述了2022年计算几何挑战赛的目标是将问题最小划分为平面子集,该问题包括将给定的线段集划分为最小数量的非交叉子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum Partition into Plane Subgraphs: The CG:SHOP Challenge 2022
We give an overview of the 2022 Computational Geometry Challenge targeting the problem Minimum Partition into Plane Subsets, which consists of partitioning a given set of line segments into a minimum number of non-crossing subsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Algorithmics
Journal of Experimental Algorithmics Mathematics-Theoretical Computer Science
CiteScore
3.10
自引率
0.00%
发文量
29
期刊介绍: The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信