S. Fekete, Phillip Keldenich, Dominik Krupke, S. Schirra
{"title":"最小分割到平面子图:CG:SHOP挑战2022","authors":"S. Fekete, Phillip Keldenich, Dominik Krupke, S. Schirra","doi":"10.1145/3604907","DOIUrl":null,"url":null,"abstract":"We give an overview of the 2022 Computational Geometry Challenge targeting the problem Minimum Partition into Plane Subsets, which consists of partitioning a given set of line segments into a minimum number of non-crossing subsets.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimum Partition into Plane Subgraphs: The CG:SHOP Challenge 2022\",\"authors\":\"S. Fekete, Phillip Keldenich, Dominik Krupke, S. Schirra\",\"doi\":\"10.1145/3604907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an overview of the 2022 Computational Geometry Challenge targeting the problem Minimum Partition into Plane Subsets, which consists of partitioning a given set of line segments into a minimum number of non-crossing subsets.\",\"PeriodicalId\":53707,\"journal\":{\"name\":\"Journal of Experimental Algorithmics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Algorithmics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Minimum Partition into Plane Subgraphs: The CG:SHOP Challenge 2022
We give an overview of the 2022 Computational Geometry Challenge targeting the problem Minimum Partition into Plane Subsets, which consists of partitioning a given set of line segments into a minimum number of non-crossing subsets.
期刊介绍:
The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design