{"title":"分数阶拉普拉斯狄利克雷问题非平凡解的不存在性","authors":"José Carmona, A. Molino","doi":"10.58997/ejde.2023.16","DOIUrl":null,"url":null,"abstract":"In this article we prove that there are no nontrivial solutions tothe Dirichlet problem for the fractional Laplacian$$ \\displaylines{(-\\Delta)^s u =f(u) \\quad \\text{in }\\Omega,\\\\ u=0 \\quad \\text{in } \\mathbb{R}^N \\backslash \\Omega,}$$ where \\(\\Omega \\subset \\mathbb{R}^N\\) (\\(N\\geq 1\\)) is a bounded domain, and f is locally Lipschitz with non-positive primitive \\(F(t)= \\int_0^t f(\\tau)d\\tau\\).","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonexitence of nontrivial solutions to Dirichlet problems for the fractional Laplacian\",\"authors\":\"José Carmona, A. Molino\",\"doi\":\"10.58997/ejde.2023.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove that there are no nontrivial solutions tothe Dirichlet problem for the fractional Laplacian$$ \\\\displaylines{(-\\\\Delta)^s u =f(u) \\\\quad \\\\text{in }\\\\Omega,\\\\\\\\ u=0 \\\\quad \\\\text{in } \\\\mathbb{R}^N \\\\backslash \\\\Omega,}$$ where \\\\(\\\\Omega \\\\subset \\\\mathbb{R}^N\\\\) (\\\\(N\\\\geq 1\\\\)) is a bounded domain, and f is locally Lipschitz with non-positive primitive \\\\(F(t)= \\\\int_0^t f(\\\\tau)d\\\\tau\\\\).\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.16\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nonexitence of nontrivial solutions to Dirichlet problems for the fractional Laplacian
In this article we prove that there are no nontrivial solutions tothe Dirichlet problem for the fractional Laplacian$$ \displaylines{(-\Delta)^s u =f(u) \quad \text{in }\Omega,\\ u=0 \quad \text{in } \mathbb{R}^N \backslash \Omega,}$$ where \(\Omega \subset \mathbb{R}^N\) (\(N\geq 1\)) is a bounded domain, and f is locally Lipschitz with non-positive primitive \(F(t)= \int_0^t f(\tau)d\tau\).
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.