现代市场中的贸易信息化

IF 3.4 3区 经济学 Q1 BUSINESS, FINANCE
Samarpan Nawn, Gaurav Raizada
{"title":"现代市场中的贸易信息化","authors":"Samarpan Nawn, Gaurav Raizada","doi":"10.1080/0015198X.2022.2126590","DOIUrl":null,"url":null,"abstract":"Abstract Using transactions-based calendar time (TBCT) portfolio analysis, we investigate informativeness of trades of investor categories, namely institutions, proprietary traders, and retail clients. We find that trade informativeness is positive for institutional and negative for retail-client investors. The informativeness of liquidity-demanding trades are less than the informativeness of liquidity-supplying trades for all trading groups, over both long and short horizons. We also find that institutions are benefitted by algorithmic executions compared to manual executions and this benefit is elevated on days of high volume and volatility. Proprietary algorithmic traders (high-frequency traders) generate positive alpha for their trades only from their liquidity-supplying trades.","PeriodicalId":48062,"journal":{"name":"Financial Analysts Journal","volume":"79 1","pages":"77 - 98"},"PeriodicalIF":3.4000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trade Informativeness in Modern Markets\",\"authors\":\"Samarpan Nawn, Gaurav Raizada\",\"doi\":\"10.1080/0015198X.2022.2126590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using transactions-based calendar time (TBCT) portfolio analysis, we investigate informativeness of trades of investor categories, namely institutions, proprietary traders, and retail clients. We find that trade informativeness is positive for institutional and negative for retail-client investors. The informativeness of liquidity-demanding trades are less than the informativeness of liquidity-supplying trades for all trading groups, over both long and short horizons. We also find that institutions are benefitted by algorithmic executions compared to manual executions and this benefit is elevated on days of high volume and volatility. Proprietary algorithmic traders (high-frequency traders) generate positive alpha for their trades only from their liquidity-supplying trades.\",\"PeriodicalId\":48062,\"journal\":{\"name\":\"Financial Analysts Journal\",\"volume\":\"79 1\",\"pages\":\"77 - 98\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Analysts Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0015198X.2022.2126590\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Analysts Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0015198X.2022.2126590","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用基于交易的日历时间(TBCT)投资组合分析,研究了机构投资者、自营交易者和零售客户三类投资者的交易信息。我们发现,交易信息对机构投资者有利,对散户投资者不利。在所有交易组中,无论是长期还是短期,流动性需求交易的信息性都低于流动性供应交易的信息性。我们还发现,与手动执行相比,机构从算法执行中受益,并且在高交易量和波动性的日子里,这种好处会得到提升。专有算法交易者(高频交易者)仅通过提供流动性的交易才能为其交易产生正alpha。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trade Informativeness in Modern Markets
Abstract Using transactions-based calendar time (TBCT) portfolio analysis, we investigate informativeness of trades of investor categories, namely institutions, proprietary traders, and retail clients. We find that trade informativeness is positive for institutional and negative for retail-client investors. The informativeness of liquidity-demanding trades are less than the informativeness of liquidity-supplying trades for all trading groups, over both long and short horizons. We also find that institutions are benefitted by algorithmic executions compared to manual executions and this benefit is elevated on days of high volume and volatility. Proprietary algorithmic traders (high-frequency traders) generate positive alpha for their trades only from their liquidity-supplying trades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Financial Analysts Journal
Financial Analysts Journal BUSINESS, FINANCE-
CiteScore
5.40
自引率
7.10%
发文量
31
期刊介绍: The Financial Analysts Journal aims to be the leading practitioner journal in the investment management community by advancing the knowledge and understanding of the practice of investment management through the publication of rigorous, peer-reviewed, practitioner-relevant research from leading academics and practitioners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信