石墨烯片增强多孔夹层圆柱形板非线性振动和非线性弯曲的再检验

IF 6.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hui‐Shen Shen, Chong Li
{"title":"石墨烯片增强多孔夹层圆柱形板非线性振动和非线性弯曲的再检验","authors":"Hui‐Shen Shen, Chong Li","doi":"10.1515/ntrev-2022-0544","DOIUrl":null,"url":null,"abstract":"Abstract This article re-examines the nonlinear vibration and nonlinear bending responses of porous sandwich cylindrical panels reinforced by graphene platelets resting on elastic foundations in thermal environments. The graphene platelet-reinforced composite (GPLRC) core is assumed to be of multilayers, and each layer may have different porosity coefficient values to achieve a piece-wise functionally graded pattern. By introducing an inhomogeneous model instead of the equivalent isotropic model (EIM), the Young’s moduli along with the shear modulus of the porous GPLRC core are predicted through a generic Halpin–Tsai model in which the porosity is included. The thermomechanical properties of metal face sheets and the porous GPLRC core are assumed to be temperature-dependent. Governing equations of motion for sandwich cylindrical panels with porous GPLRC core are formulated based on Reddy’s third-order shear deformation theory coupled with von Kármán nonlinear strain–displacement relationships. In the modeling, the panel–foundation interaction and the thermal effects are also considered. The analytical solutions for the nonlinear vibration and nonlinear bending problems are obtained by applying a two-step perturbation approach. Numerical studies are performed to compare the results obtained from the present model and the EIM. The results confirm that the EIM is not suitable for linear free vibration analysis of sandwich cylindrical panels with the porous GPLRC core, but the EIM may be valid for the cases of nonlinear vibration and nonlinear bending analyses of the same panel resting on Pasternak elastic foundations. Graphical abstract","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Re-examination of nonlinear vibration and nonlinear bending of porous sandwich cylindrical panels reinforced by graphene platelets\",\"authors\":\"Hui‐Shen Shen, Chong Li\",\"doi\":\"10.1515/ntrev-2022-0544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article re-examines the nonlinear vibration and nonlinear bending responses of porous sandwich cylindrical panels reinforced by graphene platelets resting on elastic foundations in thermal environments. The graphene platelet-reinforced composite (GPLRC) core is assumed to be of multilayers, and each layer may have different porosity coefficient values to achieve a piece-wise functionally graded pattern. By introducing an inhomogeneous model instead of the equivalent isotropic model (EIM), the Young’s moduli along with the shear modulus of the porous GPLRC core are predicted through a generic Halpin–Tsai model in which the porosity is included. The thermomechanical properties of metal face sheets and the porous GPLRC core are assumed to be temperature-dependent. Governing equations of motion for sandwich cylindrical panels with porous GPLRC core are formulated based on Reddy’s third-order shear deformation theory coupled with von Kármán nonlinear strain–displacement relationships. In the modeling, the panel–foundation interaction and the thermal effects are also considered. The analytical solutions for the nonlinear vibration and nonlinear bending problems are obtained by applying a two-step perturbation approach. Numerical studies are performed to compare the results obtained from the present model and the EIM. The results confirm that the EIM is not suitable for linear free vibration analysis of sandwich cylindrical panels with the porous GPLRC core, but the EIM may be valid for the cases of nonlinear vibration and nonlinear bending analyses of the same panel resting on Pasternak elastic foundations. Graphical abstract\",\"PeriodicalId\":18839,\"journal\":{\"name\":\"Nanotechnology Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ntrev-2022-0544\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0544","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文重新研究了弹性基础上石墨烯片增强多孔夹层柱板在热环境下的非线性振动和非线性弯曲响应。石墨烯片状增强复合材料(GPLRC)的核心被认为是多层的,每一层可能有不同的孔隙系数值,以实现逐片的功能梯度模式。通过引入非均匀模型代替等效各向同性模型(EIM),通过包含孔隙度的通用Halpin-Tsai模型预测了多孔GPLRC岩心的杨氏模量和剪切模量。假设金属面板和多孔GPLRC芯的热力学性能与温度有关。基于Reddy三阶剪切变形理论,结合von Kármán非线性应变-位移关系,建立了多孔GPLRC芯芯夹层板的运动控制方程。在模型中还考虑了面板-基础相互作用和热效应。采用两步摄动法得到了非线性振动和非线性弯曲问题的解析解。数值研究比较了本模型和EIM得到的结果。结果表明,该方法不适用于多孔GPLRC芯板夹层柱板的线性自由振动分析,但可用于基于Pasternak弹性地基的同一夹层板的非线性振动和非线性弯曲分析。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-examination of nonlinear vibration and nonlinear bending of porous sandwich cylindrical panels reinforced by graphene platelets
Abstract This article re-examines the nonlinear vibration and nonlinear bending responses of porous sandwich cylindrical panels reinforced by graphene platelets resting on elastic foundations in thermal environments. The graphene platelet-reinforced composite (GPLRC) core is assumed to be of multilayers, and each layer may have different porosity coefficient values to achieve a piece-wise functionally graded pattern. By introducing an inhomogeneous model instead of the equivalent isotropic model (EIM), the Young’s moduli along with the shear modulus of the porous GPLRC core are predicted through a generic Halpin–Tsai model in which the porosity is included. The thermomechanical properties of metal face sheets and the porous GPLRC core are assumed to be temperature-dependent. Governing equations of motion for sandwich cylindrical panels with porous GPLRC core are formulated based on Reddy’s third-order shear deformation theory coupled with von Kármán nonlinear strain–displacement relationships. In the modeling, the panel–foundation interaction and the thermal effects are also considered. The analytical solutions for the nonlinear vibration and nonlinear bending problems are obtained by applying a two-step perturbation approach. Numerical studies are performed to compare the results obtained from the present model and the EIM. The results confirm that the EIM is not suitable for linear free vibration analysis of sandwich cylindrical panels with the porous GPLRC core, but the EIM may be valid for the cases of nonlinear vibration and nonlinear bending analyses of the same panel resting on Pasternak elastic foundations. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology Reviews
Nanotechnology Reviews CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
11.40
自引率
13.50%
发文量
137
审稿时长
7 weeks
期刊介绍: The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings. In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信