T. Cullen, F. Longstaffe, U. Wortmann, Li Huang, David C Evans
{"title":"中生代脊椎动物牙釉质中13C的异常富集反映了“消失的世界”中的环境条件,而不是独特的饮食生理学","authors":"T. Cullen, F. Longstaffe, U. Wortmann, Li Huang, David C Evans","doi":"10.1017/pab.2022.43","DOIUrl":null,"url":null,"abstract":"Abstract.— Biogeochemical analyses of organisms' tissues provide direct proxies for diets, behaviors, and environmental interactions that have proven invaluable for studies of extant and extinct species. Applying these to Cretaceous ecosystems has at times produced anomalous results, however, as dinosaurs preserve unusually positive stable carbon isotope compositions relative to extant C3-feeding vertebrates. This has been hypothesized to be a unique property of dinosaur dietary physiology, with potential significance for our interpretations of their paleobiology. We test that hypothesis through multi-taxic stable carbon isotope analyses of a spatiotemporally constrained locality in the Late Cretaceous of Canada, and compare the results to a modern near-analogue environment in Louisiana. The stable carbon isotope anomaly is present in all sampled fossil vertebrates, dinosaur or not. This suggests another more widespread factor is responsible. Examinations of diagenetic effects suggest that, where present, they are insufficient to explain the isotope anomaly. The isotope anomaly is therefore not primarily the result of a unique dietary physiology of dinosaurs, but rather a mix of factors impacting all taxa, such as environmental and/or source-diet differences. Our study underscores the importance of multi-taxic samples from spatiotemporally constrained localities in testing hypotheses of extinct organisms and ecosystems, and in the use of modern data to “ground truth” when evaluating analogue versus non-analogue conditions in greenhouse paleoecosystems.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 1","pages":"563 - 577"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Anomalous 13C enrichment in Mesozoic vertebrate enamel reflects environmental conditions in a “vanished world” and not a unique dietary physiology\",\"authors\":\"T. Cullen, F. Longstaffe, U. Wortmann, Li Huang, David C Evans\",\"doi\":\"10.1017/pab.2022.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract.— Biogeochemical analyses of organisms' tissues provide direct proxies for diets, behaviors, and environmental interactions that have proven invaluable for studies of extant and extinct species. Applying these to Cretaceous ecosystems has at times produced anomalous results, however, as dinosaurs preserve unusually positive stable carbon isotope compositions relative to extant C3-feeding vertebrates. This has been hypothesized to be a unique property of dinosaur dietary physiology, with potential significance for our interpretations of their paleobiology. We test that hypothesis through multi-taxic stable carbon isotope analyses of a spatiotemporally constrained locality in the Late Cretaceous of Canada, and compare the results to a modern near-analogue environment in Louisiana. The stable carbon isotope anomaly is present in all sampled fossil vertebrates, dinosaur or not. This suggests another more widespread factor is responsible. Examinations of diagenetic effects suggest that, where present, they are insufficient to explain the isotope anomaly. The isotope anomaly is therefore not primarily the result of a unique dietary physiology of dinosaurs, but rather a mix of factors impacting all taxa, such as environmental and/or source-diet differences. Our study underscores the importance of multi-taxic samples from spatiotemporally constrained localities in testing hypotheses of extinct organisms and ecosystems, and in the use of modern data to “ground truth” when evaluating analogue versus non-analogue conditions in greenhouse paleoecosystems.\",\"PeriodicalId\":54646,\"journal\":{\"name\":\"Paleobiology\",\"volume\":\"49 1\",\"pages\":\"563 - 577\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2022.43\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2022.43","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Anomalous 13C enrichment in Mesozoic vertebrate enamel reflects environmental conditions in a “vanished world” and not a unique dietary physiology
Abstract.— Biogeochemical analyses of organisms' tissues provide direct proxies for diets, behaviors, and environmental interactions that have proven invaluable for studies of extant and extinct species. Applying these to Cretaceous ecosystems has at times produced anomalous results, however, as dinosaurs preserve unusually positive stable carbon isotope compositions relative to extant C3-feeding vertebrates. This has been hypothesized to be a unique property of dinosaur dietary physiology, with potential significance for our interpretations of their paleobiology. We test that hypothesis through multi-taxic stable carbon isotope analyses of a spatiotemporally constrained locality in the Late Cretaceous of Canada, and compare the results to a modern near-analogue environment in Louisiana. The stable carbon isotope anomaly is present in all sampled fossil vertebrates, dinosaur or not. This suggests another more widespread factor is responsible. Examinations of diagenetic effects suggest that, where present, they are insufficient to explain the isotope anomaly. The isotope anomaly is therefore not primarily the result of a unique dietary physiology of dinosaurs, but rather a mix of factors impacting all taxa, such as environmental and/or source-diet differences. Our study underscores the importance of multi-taxic samples from spatiotemporally constrained localities in testing hypotheses of extinct organisms and ecosystems, and in the use of modern data to “ground truth” when evaluating analogue versus non-analogue conditions in greenhouse paleoecosystems.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.