亚纯仿射连接的单值杀伤域及其分类

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Alexis Garcia
{"title":"亚纯仿射连接的单值杀伤域及其分类","authors":"Alexis Garcia","doi":"10.3842/SIGMA.2023.052","DOIUrl":null,"url":null,"abstract":"We give a geometric condition on a meromorphic affine connection for its Killing vector fields to be single valued. More precisely, this condition relies on the pole of the connection and its geodesics, and defines a subcategory. To this end, we use the equivalence between these objects and meromorphic affine Cartan geometries. The proof of the previous result is then a consequence of a more general result linking the distinguished curves of meromorphic Cartan geometries, their poles and their infinitesimal automorphisms, which is the main purpose of the paper. This enables to extend the classification result from [Biswas I., Dumitrescu S., McKay B., Epijournal Geom. Algebrique 3 (2019), 19, 10 pages, arXiv:1804.08949] to the subcategory of meromorphic affine connection described before.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification\",\"authors\":\"Alexis Garcia\",\"doi\":\"10.3842/SIGMA.2023.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a geometric condition on a meromorphic affine connection for its Killing vector fields to be single valued. More precisely, this condition relies on the pole of the connection and its geodesics, and defines a subcategory. To this end, we use the equivalence between these objects and meromorphic affine Cartan geometries. The proof of the previous result is then a consequence of a more general result linking the distinguished curves of meromorphic Cartan geometries, their poles and their infinitesimal automorphisms, which is the main purpose of the paper. This enables to extend the classification result from [Biswas I., Dumitrescu S., McKay B., Epijournal Geom. Algebrique 3 (2019), 19, 10 pages, arXiv:1804.08949] to the subcategory of meromorphic affine connection described before.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.052\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.052","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了亚纯仿射连接的Killing向量场为单值的一个几何条件。更准确地说,这个条件依赖于连接的极点及其测地线,并定义了一个子类别。为此,我们使用这些对象和亚纯仿射Cartan几何之间的等价性。先前结果的证明是将亚纯Cartan几何的可分辨曲线、它们的极点和它们的无穷小自同构联系起来的一个更一般的结果的结果,这是本文的主要目的。这使得能够将[Biswas I.,Dumitrescu S.,McKay B.,Epijournal Geom.Algorique 3(2019),19,10 pages,arXiv:1804.08949]的分类结果扩展到前面描述的亚纯仿射连接的子类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification
We give a geometric condition on a meromorphic affine connection for its Killing vector fields to be single valued. More precisely, this condition relies on the pole of the connection and its geodesics, and defines a subcategory. To this end, we use the equivalence between these objects and meromorphic affine Cartan geometries. The proof of the previous result is then a consequence of a more general result linking the distinguished curves of meromorphic Cartan geometries, their poles and their infinitesimal automorphisms, which is the main purpose of the paper. This enables to extend the classification result from [Biswas I., Dumitrescu S., McKay B., Epijournal Geom. Algebrique 3 (2019), 19, 10 pages, arXiv:1804.08949] to the subcategory of meromorphic affine connection described before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信