M. Davey, G. Feeney, H. Annuk, Maxwell Paganga, E. Holian, A. Lowery, M. Kerin, N. Miller
{"title":"五-三核糖核酸表达检测法辅助大肠癌癌症诊断的鉴定","authors":"M. Davey, G. Feeney, H. Annuk, Maxwell Paganga, E. Holian, A. Lowery, M. Kerin, N. Miller","doi":"10.3390/gidisord4030018","DOIUrl":null,"url":null,"abstract":"Introduction: One-third of colorectal cancer (CRC) patients present with advanced disease, and establishing control remains a challenge. Identifying novel biomarkers to facilitate earlier diagnosis is imperative in enhancing oncological outcomes. We aimed to create miRNA oncogenic signature to aid CRC diagnosis. Methods: Tumour and tumour-associated normal (TAN) were extracted from 74 patients during surgery for CRC. RNA was isolated and target miRNAs were quantified using real-time reverse transcriptase polymerase chain reaction. Regression analyses were performed in order to identify miRNA targets capable of differentiating CRC from TAN and compared with two endogenous controls (miR-16 and miR-345) in each sample. Areas under the curve (AUCs) in Receiver Operating Characteristic (ROC) analyses were determined. Results: MiR-21 (β-coefficient:3.661, SE:1.720, p = 0.033), miR-31 (β-coefficient:2.783, SE:0.918, p = 0.002), and miR-150 (β-coefficient:−4.404, SE:0.526, p = 0.004) expression profiles differentiated CRC from TAN. In multivariable analyses, increased miR-31 (β-coefficient:2.431, SE:0.715, p < 0.001) and reduced miR-150 (β-coefficient:−4.620, SE:1.319, p < 0.001) independently differentiated CRC from TAN. The highest AUC generated for miR-21, miR-31, and miR-150 in an oncogenic expression assay was 83.0% (95%CI: 61.7–100.0, p < 0.001). In the circulation of 34 independent CRC patients and 5 controls, the mean expression of miR-21 (p = 0.001), miR-31 (p = 0.001), and miR-150 (p < 0.001) differentiated CRC from controls; however, the median expression of miR-21 (p = 0.476), miR-31 (p = 0.933), and miR-150 (p = 0.148) failed to differentiate these groups. Conclusion: This study identified a five-miRNA signature capable of distinguishing CRC from normal tissues with a high diagnostic test accuracy. Further experimentation with this signature is required to elucidate its diagnostic relevance in the circulation of CRC patients.","PeriodicalId":73131,"journal":{"name":"Gastrointestinal disorders (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of a Five-MiRNA Expression Assay to Aid Colorectal Cancer Diagnosis\",\"authors\":\"M. Davey, G. Feeney, H. Annuk, Maxwell Paganga, E. Holian, A. Lowery, M. Kerin, N. Miller\",\"doi\":\"10.3390/gidisord4030018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: One-third of colorectal cancer (CRC) patients present with advanced disease, and establishing control remains a challenge. Identifying novel biomarkers to facilitate earlier diagnosis is imperative in enhancing oncological outcomes. We aimed to create miRNA oncogenic signature to aid CRC diagnosis. Methods: Tumour and tumour-associated normal (TAN) were extracted from 74 patients during surgery for CRC. RNA was isolated and target miRNAs were quantified using real-time reverse transcriptase polymerase chain reaction. Regression analyses were performed in order to identify miRNA targets capable of differentiating CRC from TAN and compared with two endogenous controls (miR-16 and miR-345) in each sample. Areas under the curve (AUCs) in Receiver Operating Characteristic (ROC) analyses were determined. Results: MiR-21 (β-coefficient:3.661, SE:1.720, p = 0.033), miR-31 (β-coefficient:2.783, SE:0.918, p = 0.002), and miR-150 (β-coefficient:−4.404, SE:0.526, p = 0.004) expression profiles differentiated CRC from TAN. In multivariable analyses, increased miR-31 (β-coefficient:2.431, SE:0.715, p < 0.001) and reduced miR-150 (β-coefficient:−4.620, SE:1.319, p < 0.001) independently differentiated CRC from TAN. The highest AUC generated for miR-21, miR-31, and miR-150 in an oncogenic expression assay was 83.0% (95%CI: 61.7–100.0, p < 0.001). In the circulation of 34 independent CRC patients and 5 controls, the mean expression of miR-21 (p = 0.001), miR-31 (p = 0.001), and miR-150 (p < 0.001) differentiated CRC from controls; however, the median expression of miR-21 (p = 0.476), miR-31 (p = 0.933), and miR-150 (p = 0.148) failed to differentiate these groups. Conclusion: This study identified a five-miRNA signature capable of distinguishing CRC from normal tissues with a high diagnostic test accuracy. Further experimentation with this signature is required to elucidate its diagnostic relevance in the circulation of CRC patients.\",\"PeriodicalId\":73131,\"journal\":{\"name\":\"Gastrointestinal disorders (Basel, Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastrointestinal disorders (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/gidisord4030018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastrointestinal disorders (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/gidisord4030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Identification of a Five-MiRNA Expression Assay to Aid Colorectal Cancer Diagnosis
Introduction: One-third of colorectal cancer (CRC) patients present with advanced disease, and establishing control remains a challenge. Identifying novel biomarkers to facilitate earlier diagnosis is imperative in enhancing oncological outcomes. We aimed to create miRNA oncogenic signature to aid CRC diagnosis. Methods: Tumour and tumour-associated normal (TAN) were extracted from 74 patients during surgery for CRC. RNA was isolated and target miRNAs were quantified using real-time reverse transcriptase polymerase chain reaction. Regression analyses were performed in order to identify miRNA targets capable of differentiating CRC from TAN and compared with two endogenous controls (miR-16 and miR-345) in each sample. Areas under the curve (AUCs) in Receiver Operating Characteristic (ROC) analyses were determined. Results: MiR-21 (β-coefficient:3.661, SE:1.720, p = 0.033), miR-31 (β-coefficient:2.783, SE:0.918, p = 0.002), and miR-150 (β-coefficient:−4.404, SE:0.526, p = 0.004) expression profiles differentiated CRC from TAN. In multivariable analyses, increased miR-31 (β-coefficient:2.431, SE:0.715, p < 0.001) and reduced miR-150 (β-coefficient:−4.620, SE:1.319, p < 0.001) independently differentiated CRC from TAN. The highest AUC generated for miR-21, miR-31, and miR-150 in an oncogenic expression assay was 83.0% (95%CI: 61.7–100.0, p < 0.001). In the circulation of 34 independent CRC patients and 5 controls, the mean expression of miR-21 (p = 0.001), miR-31 (p = 0.001), and miR-150 (p < 0.001) differentiated CRC from controls; however, the median expression of miR-21 (p = 0.476), miR-31 (p = 0.933), and miR-150 (p = 0.148) failed to differentiate these groups. Conclusion: This study identified a five-miRNA signature capable of distinguishing CRC from normal tissues with a high diagnostic test accuracy. Further experimentation with this signature is required to elucidate its diagnostic relevance in the circulation of CRC patients.