凯勒猜想重访

IF 0.4 Q4 MATHEMATICS
P. Horák, Dongryul Kim
{"title":"凯勒猜想重访","authors":"P. Horák, Dongryul Kim","doi":"10.36890/iejg.984269","DOIUrl":null,"url":null,"abstract":"In 1930 Keller conjectured that each tiling of Rn by unit cubes contains a pair of cubes sharing a complete (n-1)-dimensional face. This conjecture was solved only 50 years later by Lagarias and Shor who found a counterexample for all n >= 10. In this paper we show that neither a modification of Keller's when the unit cube is substituted by a \ntile of more complex shape is true.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keller's Conjecture Revisited\",\"authors\":\"P. Horák, Dongryul Kim\",\"doi\":\"10.36890/iejg.984269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1930 Keller conjectured that each tiling of Rn by unit cubes contains a pair of cubes sharing a complete (n-1)-dimensional face. This conjecture was solved only 50 years later by Lagarias and Shor who found a counterexample for all n >= 10. In this paper we show that neither a modification of Keller's when the unit cube is substituted by a \\ntile of more complex shape is true.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.984269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.984269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1930年,Keller推测,单位立方体对Rn的每一次平铺都包含一对立方体,它们共享一个完整的(n-1)维面。这个猜想在50年后才被Lagarias和Shor解决,他们发现了所有n >= 10的反例。在本文中,我们证明当单位立方体被更复杂形状的瓦片取代时,Keller的修正都是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keller's Conjecture Revisited
In 1930 Keller conjectured that each tiling of Rn by unit cubes contains a pair of cubes sharing a complete (n-1)-dimensional face. This conjecture was solved only 50 years later by Lagarias and Shor who found a counterexample for all n >= 10. In this paper we show that neither a modification of Keller's when the unit cube is substituted by a tile of more complex shape is true.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信