D. Strogen, H. Seebeck, Benjamin R. Hines, K. J. Bland, J. Crampton
{"title":"西兰迪亚的古地理演化:白垩纪中期至今","authors":"D. Strogen, H. Seebeck, Benjamin R. Hines, K. J. Bland, J. Crampton","doi":"10.1080/00288306.2022.2115520","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a suite of 15 palaeogeographic maps illustrating the geological evolution of the entirety of Zealandia, from mid-Cretaceous to present, highlighting major tectonic phases, from initial Gondwana rifting through to development of the Neogene plate boundary. They illustrate palaeobathymetric and palaeofacies interpretations along with supporting geological datasets and a synthesis of regional tectonics. The maps are underpinned by a geologically-constrained and structurally-based rigid retro-deformation block model. This model, tied to the global plate circuit, is relatively simple for the main regions of Northern and Southern Zealandia, but breaks central Zealandia into numerous fault-bounded blocks, reflecting complex Neogene deformation associated with the modern plate boundary. Production of maps using GPlates and GIS allows for simple alteration or refinement of the block model and reconstruction of any geological dataset at any time. Reconstructions are within a palaeomagnetic reference frame, allowing assessment of palaeo-latitude, critical for palaeo-climatic and palaeo-biogeographic studies.","PeriodicalId":49752,"journal":{"name":"New Zealand Journal of Geology and Geophysics","volume":"66 1","pages":"528 - 557"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Palaeogeographic evolution of Zealandia: mid-Cretaceous to present\",\"authors\":\"D. Strogen, H. Seebeck, Benjamin R. Hines, K. J. Bland, J. Crampton\",\"doi\":\"10.1080/00288306.2022.2115520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We present a suite of 15 palaeogeographic maps illustrating the geological evolution of the entirety of Zealandia, from mid-Cretaceous to present, highlighting major tectonic phases, from initial Gondwana rifting through to development of the Neogene plate boundary. They illustrate palaeobathymetric and palaeofacies interpretations along with supporting geological datasets and a synthesis of regional tectonics. The maps are underpinned by a geologically-constrained and structurally-based rigid retro-deformation block model. This model, tied to the global plate circuit, is relatively simple for the main regions of Northern and Southern Zealandia, but breaks central Zealandia into numerous fault-bounded blocks, reflecting complex Neogene deformation associated with the modern plate boundary. Production of maps using GPlates and GIS allows for simple alteration or refinement of the block model and reconstruction of any geological dataset at any time. Reconstructions are within a palaeomagnetic reference frame, allowing assessment of palaeo-latitude, critical for palaeo-climatic and palaeo-biogeographic studies.\",\"PeriodicalId\":49752,\"journal\":{\"name\":\"New Zealand Journal of Geology and Geophysics\",\"volume\":\"66 1\",\"pages\":\"528 - 557\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Geology and Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/00288306.2022.2115520\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Geology and Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/00288306.2022.2115520","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Palaeogeographic evolution of Zealandia: mid-Cretaceous to present
ABSTRACT We present a suite of 15 palaeogeographic maps illustrating the geological evolution of the entirety of Zealandia, from mid-Cretaceous to present, highlighting major tectonic phases, from initial Gondwana rifting through to development of the Neogene plate boundary. They illustrate palaeobathymetric and palaeofacies interpretations along with supporting geological datasets and a synthesis of regional tectonics. The maps are underpinned by a geologically-constrained and structurally-based rigid retro-deformation block model. This model, tied to the global plate circuit, is relatively simple for the main regions of Northern and Southern Zealandia, but breaks central Zealandia into numerous fault-bounded blocks, reflecting complex Neogene deformation associated with the modern plate boundary. Production of maps using GPlates and GIS allows for simple alteration or refinement of the block model and reconstruction of any geological dataset at any time. Reconstructions are within a palaeomagnetic reference frame, allowing assessment of palaeo-latitude, critical for palaeo-climatic and palaeo-biogeographic studies.
期刊介绍:
Aims: New Zealand is well respected for its growing research activity in the geosciences, particularly in circum-Pacific earth science. The New Zealand Journal of Geology and Geophysics plays an important role in disseminating field-based, experimental, and theoretical research to geoscientists with interests both within and beyond the circum-Pacific. Scope of submissions: The New Zealand Journal of Geology and Geophysics publishes original research papers, review papers, short communications and letters. We welcome submissions on all aspects of the earth sciences relevant to New Zealand, the Pacific Rim, and Antarctica. The subject matter includes geology, geophysics, physical geography and pedology.