应用分数演算分析最终消费和总投资对GDP的影响

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Badik, Michal Feckan
{"title":"应用分数演算分析最终消费和总投资对GDP的影响","authors":"A. Badik, Michal Feckan","doi":"10.2478/jamsi-2021-0004","DOIUrl":null,"url":null,"abstract":"Abstract This paper points out the possibility of suitable use of Caputo fractional derivative in regression model. Fitting historical data using a regression model seems to be useful in many fields, among other things, for the short-term prediction of further developments in the state variable. Therefore, it is important to fit the historical data as accurately as possible using the given variables. Using Caputo fractional derivative, this accuracy can be increased in the model described in this paper.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"17 1","pages":"65 - 72"},"PeriodicalIF":0.3000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applying fractional calculus to analyze final consumption and gross investment influence on GDP\",\"authors\":\"A. Badik, Michal Feckan\",\"doi\":\"10.2478/jamsi-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper points out the possibility of suitable use of Caputo fractional derivative in regression model. Fitting historical data using a regression model seems to be useful in many fields, among other things, for the short-term prediction of further developments in the state variable. Therefore, it is important to fit the historical data as accurately as possible using the given variables. Using Caputo fractional derivative, this accuracy can be increased in the model described in this paper.\",\"PeriodicalId\":43016,\"journal\":{\"name\":\"Journal of Applied Mathematics Statistics and Informatics\",\"volume\":\"17 1\",\"pages\":\"65 - 72\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jamsi-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

本文指出了在回归模型中适当使用Caputo分数导数的可能性。使用回归模型拟合历史数据似乎在许多领域都很有用,尤其是对于状态变量进一步发展的短期预测。因此,使用给定的变量尽可能准确地拟合历史数据是很重要的。使用Caputo分数导数,可以在本文描述的模型中提高这种精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying fractional calculus to analyze final consumption and gross investment influence on GDP
Abstract This paper points out the possibility of suitable use of Caputo fractional derivative in regression model. Fitting historical data using a regression model seems to be useful in many fields, among other things, for the short-term prediction of further developments in the state variable. Therefore, it is important to fit the historical data as accurately as possible using the given variables. Using Caputo fractional derivative, this accuracy can be increased in the model described in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信