设计矩阵正交时SLOPE的模式恢复和信号去噪

Pub Date : 2022-02-17 DOI:10.37190/0208-4147.00066
T. Skalski, P. Graczyk, Bartosz Kołodziejek, Maciej Wilczy'nski
{"title":"设计矩阵正交时SLOPE的模式恢复和信号去噪","authors":"T. Skalski, P. Graczyk, Bartosz Kołodziejek, Maciej Wilczy'nski","doi":"10.37190/0208-4147.00066","DOIUrl":null,"url":null,"abstract":"Sorted (cid:96) 1 Penalized Estimator (SLOPE) is a relatively new convex regularization method for fitting high-dimensional regression models. SLOPE allows to reduce the model dimension by shrinking some estimates of the regression coefficients completely to zero or by equating the absolute values of some nonzero estimates of these coefficients. This allows to identify situations where some of true regression coefficients are equal. In this article we will introduce the SLOPE pattern, i.e., the set of relations between the true regression coefficients, which can be identified by SLOPE. We will also present new results on the strong consistency of SLOPE estimators and on the strong consistency of pattern recovery by SLOPE when the design matrix is orthogonal and illustrate advantages of the SLOPE clustering in the context of high frequency signal denoising.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pattern recovery and signal denoising by SLOPE when the design matrix is orthogonal\",\"authors\":\"T. Skalski, P. Graczyk, Bartosz Kołodziejek, Maciej Wilczy'nski\",\"doi\":\"10.37190/0208-4147.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorted (cid:96) 1 Penalized Estimator (SLOPE) is a relatively new convex regularization method for fitting high-dimensional regression models. SLOPE allows to reduce the model dimension by shrinking some estimates of the regression coefficients completely to zero or by equating the absolute values of some nonzero estimates of these coefficients. This allows to identify situations where some of true regression coefficients are equal. In this article we will introduce the SLOPE pattern, i.e., the set of relations between the true regression coefficients, which can be identified by SLOPE. We will also present new results on the strong consistency of SLOPE estimators and on the strong consistency of pattern recovery by SLOPE when the design matrix is orthogonal and illustrate advantages of the SLOPE clustering in the context of high frequency signal denoising.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

排序(cid:96)1惩罚估计(SLOPE)是一种相对较新的凸正则化方法,用于拟合高维回归模型。SLOPE允许通过将回归系数的一些估计值完全缩小为零或通过将这些系数的一些非零估计值的绝对值相等来降低模型维数。这允许识别一些真实回归系数相等的情况。在这篇文章中,我们将介绍SLOPE模式,即真实回归系数之间的一组关系,它可以通过SLOPE来识别。当设计矩阵是正交的时,我们还将给出关于SLOPE估计量的强一致性和关于通过SLOPE进行的模式恢复的强一致度的新结果,并说明SLOPE聚类在高频信号去噪背景下的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Pattern recovery and signal denoising by SLOPE when the design matrix is orthogonal
Sorted (cid:96) 1 Penalized Estimator (SLOPE) is a relatively new convex regularization method for fitting high-dimensional regression models. SLOPE allows to reduce the model dimension by shrinking some estimates of the regression coefficients completely to zero or by equating the absolute values of some nonzero estimates of these coefficients. This allows to identify situations where some of true regression coefficients are equal. In this article we will introduce the SLOPE pattern, i.e., the set of relations between the true regression coefficients, which can be identified by SLOPE. We will also present new results on the strong consistency of SLOPE estimators and on the strong consistency of pattern recovery by SLOPE when the design matrix is orthogonal and illustrate advantages of the SLOPE clustering in the context of high frequency signal denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信