{"title":"基于ARIMA的选定欧洲国家新冠肺炎确诊病例动态预测","authors":"Tadeusz Kufel","doi":"10.24136/eq.2020.009","DOIUrl":null,"url":null,"abstract":"Research background: On 11 March 2020, the Covid-19 epidemic was identified by the World Health Organization (WHO) as a global pandemic. The rapid increase in the scale of the epidemic has led to the introduction of non-pharmaceutical countermeasures. Forecast of the Covid-19 prevalence is an essential element in the actions undertaken by authorities. Purpose of the article: The article aims to assess the usefulness of the Auto-regressive Integrated Moving Average (ARIMA) model for predicting the dynamics of Covid-19 incidence at different stages of the epidemic, from the first phase of growth, to the maximum daily incidence, until the phase of the epidemic's extinction. Methods: ARIMA(p,d,q) models are used to predict the dynamics of virus distribution in many diseases. Model estimates, forecasts, and the accuracy of forecasts are presented in this paper. Findings & Value added: Using the ARIMA(1,2,0) model for forecasting the dynamics of Covid-19 cases in each stage of the epidemic is a way of evaluating the implemented non-pharmaceutical countermeasures on the dynamics of the epidemic.","PeriodicalId":45768,"journal":{"name":"Equilibrium-Quarterly Journal of Economics and Economic Policy","volume":"15 1","pages":"181-204"},"PeriodicalIF":5.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries\",\"authors\":\"Tadeusz Kufel\",\"doi\":\"10.24136/eq.2020.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research background: On 11 March 2020, the Covid-19 epidemic was identified by the World Health Organization (WHO) as a global pandemic. The rapid increase in the scale of the epidemic has led to the introduction of non-pharmaceutical countermeasures. Forecast of the Covid-19 prevalence is an essential element in the actions undertaken by authorities. Purpose of the article: The article aims to assess the usefulness of the Auto-regressive Integrated Moving Average (ARIMA) model for predicting the dynamics of Covid-19 incidence at different stages of the epidemic, from the first phase of growth, to the maximum daily incidence, until the phase of the epidemic's extinction. Methods: ARIMA(p,d,q) models are used to predict the dynamics of virus distribution in many diseases. Model estimates, forecasts, and the accuracy of forecasts are presented in this paper. Findings & Value added: Using the ARIMA(1,2,0) model for forecasting the dynamics of Covid-19 cases in each stage of the epidemic is a way of evaluating the implemented non-pharmaceutical countermeasures on the dynamics of the epidemic.\",\"PeriodicalId\":45768,\"journal\":{\"name\":\"Equilibrium-Quarterly Journal of Economics and Economic Policy\",\"volume\":\"15 1\",\"pages\":\"181-204\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Equilibrium-Quarterly Journal of Economics and Economic Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24136/eq.2020.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equilibrium-Quarterly Journal of Economics and Economic Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24136/eq.2020.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries
Research background: On 11 March 2020, the Covid-19 epidemic was identified by the World Health Organization (WHO) as a global pandemic. The rapid increase in the scale of the epidemic has led to the introduction of non-pharmaceutical countermeasures. Forecast of the Covid-19 prevalence is an essential element in the actions undertaken by authorities. Purpose of the article: The article aims to assess the usefulness of the Auto-regressive Integrated Moving Average (ARIMA) model for predicting the dynamics of Covid-19 incidence at different stages of the epidemic, from the first phase of growth, to the maximum daily incidence, until the phase of the epidemic's extinction. Methods: ARIMA(p,d,q) models are used to predict the dynamics of virus distribution in many diseases. Model estimates, forecasts, and the accuracy of forecasts are presented in this paper. Findings & Value added: Using the ARIMA(1,2,0) model for forecasting the dynamics of Covid-19 cases in each stage of the epidemic is a way of evaluating the implemented non-pharmaceutical countermeasures on the dynamics of the epidemic.
期刊介绍:
Equilibrium. Quarterly Journal of Economics and Economic Policy is a scientific journal dedicated to economics, which is the result of close cooperation between the Instytut Badań Gospodarczych/Institute of Economic Research (Poland) and Polish Economic Society and leading European universities. The journal constitutes a platform for exchange of views of the scientific community, as well as reflects the current status and trends of world science and economy.
The journal especially welcome empirical articles making use of quantitative methods in: Macroeconomics and Monetary Economics, International Economics, Financial Economics and Banking, Public Economics, Business Economics, Labor and Demographic Economics, Economic Development, and Technological Change, and Growth.
Current most preferable topics and special issues:
The economics of artificial intelligence: business potentials and risks;
Digitalization and entrepreneurship in economics;
Sustainable socio-economic development, environmental and ecological economics;
Transition in the energy market (improving energy efficiency, alternative energy sources, renewable energy, energy security).