{"title":"基于双曲切线的自适应惯性权粒子群优化","authors":"Yaw Opoku Mensah Sekyere, F. Effah, P. Okyere","doi":"10.25077/jnte.v12n2.1095.2023","DOIUrl":null,"url":null,"abstract":"This paper presents a study on using adaptive inertia weight (AIW) in particle swarm optimization (PSO) for solving optimization problems. An AIW function based on the hyperbolic tangent function was proposed, with the function parameters adaptively tuned based on the particle best and global best values. The performance of the proposed AIW-PSO was compared with standard PSO and other PSO variations using seven benchmark functions. The results showed that the proposed AIW-PSO outperformed the other variations in terms of minimum cost and mean cost while reducing the standard deviation of cost. The performance of the different PSO variations was also analysed by plotting the best cost against iteration, with the proposed AIW-PSO showing a faster convergence rate. Overall, the study demonstrates the effectiveness of using an adaptive inertia weight function in PSO for optimizing problems.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic Tangent - Based Adaptive Inertia Weight Particle Swarm Optimization\",\"authors\":\"Yaw Opoku Mensah Sekyere, F. Effah, P. Okyere\",\"doi\":\"10.25077/jnte.v12n2.1095.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on using adaptive inertia weight (AIW) in particle swarm optimization (PSO) for solving optimization problems. An AIW function based on the hyperbolic tangent function was proposed, with the function parameters adaptively tuned based on the particle best and global best values. The performance of the proposed AIW-PSO was compared with standard PSO and other PSO variations using seven benchmark functions. The results showed that the proposed AIW-PSO outperformed the other variations in terms of minimum cost and mean cost while reducing the standard deviation of cost. The performance of the different PSO variations was also analysed by plotting the best cost against iteration, with the proposed AIW-PSO showing a faster convergence rate. Overall, the study demonstrates the effectiveness of using an adaptive inertia weight function in PSO for optimizing problems.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n2.1095.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1095.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperbolic Tangent - Based Adaptive Inertia Weight Particle Swarm Optimization
This paper presents a study on using adaptive inertia weight (AIW) in particle swarm optimization (PSO) for solving optimization problems. An AIW function based on the hyperbolic tangent function was proposed, with the function parameters adaptively tuned based on the particle best and global best values. The performance of the proposed AIW-PSO was compared with standard PSO and other PSO variations using seven benchmark functions. The results showed that the proposed AIW-PSO outperformed the other variations in terms of minimum cost and mean cost while reducing the standard deviation of cost. The performance of the different PSO variations was also analysed by plotting the best cost against iteration, with the proposed AIW-PSO showing a faster convergence rate. Overall, the study demonstrates the effectiveness of using an adaptive inertia weight function in PSO for optimizing problems.