{"title":"求解应用非线性模型的乘法演算方法","authors":"Gurjeet Singh, S. Bhalla, R. Behl","doi":"10.3390/mca28020028","DOIUrl":null,"url":null,"abstract":"Problems such as population growth, continuous stirred tank reactor (CSTR), and ideal gas have been studied over the last four decades in the fields of medical science, engineering, and applied science, respectively. Some of the main motivations were to understand the pattern of such issues and how to obtain the solution to them. With the help of applied mathematics, these problems can be converted or modeled by nonlinear expressions with similar properties. Then, the required solution can be obtained by means of iterative techniques. In this manuscript, we propose a new iterative scheme for computing multiple roots (without prior knowledge of multiplicity m) based on multiplicative calculus rather than standard calculus. The structure of our scheme stands on the well-known Schröder method and also retains the same convergence order. Some numerical examples are tested to find the roots of nonlinear equations, and results are found to be competent compared with ordinary derivative methods. Finally, the new scheme is also analyzed by the basin of attractions that also supports the theoretical aspects.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multiplicative Calculus Approach to Solve Applied Nonlinear Models\",\"authors\":\"Gurjeet Singh, S. Bhalla, R. Behl\",\"doi\":\"10.3390/mca28020028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems such as population growth, continuous stirred tank reactor (CSTR), and ideal gas have been studied over the last four decades in the fields of medical science, engineering, and applied science, respectively. Some of the main motivations were to understand the pattern of such issues and how to obtain the solution to them. With the help of applied mathematics, these problems can be converted or modeled by nonlinear expressions with similar properties. Then, the required solution can be obtained by means of iterative techniques. In this manuscript, we propose a new iterative scheme for computing multiple roots (without prior knowledge of multiplicity m) based on multiplicative calculus rather than standard calculus. The structure of our scheme stands on the well-known Schröder method and also retains the same convergence order. Some numerical examples are tested to find the roots of nonlinear equations, and results are found to be competent compared with ordinary derivative methods. Finally, the new scheme is also analyzed by the basin of attractions that also supports the theoretical aspects.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Multiplicative Calculus Approach to Solve Applied Nonlinear Models
Problems such as population growth, continuous stirred tank reactor (CSTR), and ideal gas have been studied over the last four decades in the fields of medical science, engineering, and applied science, respectively. Some of the main motivations were to understand the pattern of such issues and how to obtain the solution to them. With the help of applied mathematics, these problems can be converted or modeled by nonlinear expressions with similar properties. Then, the required solution can be obtained by means of iterative techniques. In this manuscript, we propose a new iterative scheme for computing multiple roots (without prior knowledge of multiplicity m) based on multiplicative calculus rather than standard calculus. The structure of our scheme stands on the well-known Schröder method and also retains the same convergence order. Some numerical examples are tested to find the roots of nonlinear equations, and results are found to be competent compared with ordinary derivative methods. Finally, the new scheme is also analyzed by the basin of attractions that also supports the theoretical aspects.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.