Hikaru Sawada, Chong Chen, Hisanori Iwamoto, Ken Takai
{"title":"进入熔融硫","authors":"Hikaru Sawada, Chong Chen, Hisanori Iwamoto, Ken Takai","doi":"10.1111/iar.12489","DOIUrl":null,"url":null,"abstract":"<p>Lakes of molten sulfur are features sometimes found in seafloor hydrothermal vent systems. Daikoku of the northern Mariana Arc is notable for being home to one of such features inside its summit caldera, the “Sulfur Cauldron” discovered in 2006. A number of oceanographic research cruises since then have revealed significant volcanic activities on Daikoku Seamount, including an eruption event in 2014 leading to the formation of a new basin-like crater. How this event impacted the sulfur lake on Daikoku Seamount remained unclear. Here, we revisited Daikoku Seamount with a remotely operated vehicle to show that the new crater is currently home to a much larger molten sulfur lake than the Sulfur Cauldron, which we name the “Rengoku” sulfur lake. Our samples provided new insights on the structure of submarine sulfur lakes, and contribute to the time-series observation of volcanic and hydrothermal activities on Daikoku Seamount.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A trip into molten sulfur\",\"authors\":\"Hikaru Sawada, Chong Chen, Hisanori Iwamoto, Ken Takai\",\"doi\":\"10.1111/iar.12489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lakes of molten sulfur are features sometimes found in seafloor hydrothermal vent systems. Daikoku of the northern Mariana Arc is notable for being home to one of such features inside its summit caldera, the “Sulfur Cauldron” discovered in 2006. A number of oceanographic research cruises since then have revealed significant volcanic activities on Daikoku Seamount, including an eruption event in 2014 leading to the formation of a new basin-like crater. How this event impacted the sulfur lake on Daikoku Seamount remained unclear. Here, we revisited Daikoku Seamount with a remotely operated vehicle to show that the new crater is currently home to a much larger molten sulfur lake than the Sulfur Cauldron, which we name the “Rengoku” sulfur lake. Our samples provided new insights on the structure of submarine sulfur lakes, and contribute to the time-series observation of volcanic and hydrothermal activities on Daikoku Seamount.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12489\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12489","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Lakes of molten sulfur are features sometimes found in seafloor hydrothermal vent systems. Daikoku of the northern Mariana Arc is notable for being home to one of such features inside its summit caldera, the “Sulfur Cauldron” discovered in 2006. A number of oceanographic research cruises since then have revealed significant volcanic activities on Daikoku Seamount, including an eruption event in 2014 leading to the formation of a new basin-like crater. How this event impacted the sulfur lake on Daikoku Seamount remained unclear. Here, we revisited Daikoku Seamount with a remotely operated vehicle to show that the new crater is currently home to a much larger molten sulfur lake than the Sulfur Cauldron, which we name the “Rengoku” sulfur lake. Our samples provided new insights on the structure of submarine sulfur lakes, and contribute to the time-series observation of volcanic and hydrothermal activities on Daikoku Seamount.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.