基于Extra-Tree算法的入侵检测特征选择与分类集成方法

IF 0.5 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
{"title":"基于Extra-Tree算法的入侵检测特征选择与分类集成方法","authors":"","doi":"10.4018/ijisp.2022010113","DOIUrl":null,"url":null,"abstract":"The number of attacks increased with speedy development in web communication in the last couple of years. The Anomaly Detection method for IDS has become substantial in detecting novel attacks in Intrusion Detection System (IDS). Achieving high accuracy are the significant challenges in designing an intrusion detection system. It also emphasizes applying different feature selection techniques to identify the most suitable feature subset. The author uses Extremely randomized trees (Extra-Tree) for feature importance. The author tries multiple thresholds on the feature importance parameters to find the best features. If single classifiers use, then the classifier's output is wrong, so that the final decision may be wrong. So The author uses an Extra-Tree classifier applied to the best-selected features. The proposed method is estimated on standard datasets KDD CUP'99, NSL-KDD, and UNSW-NB15. The experimental results show that the proposed approach performs better than existing methods in detection rate, false alarm rate, and accuracy.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Ensemble approach for feature selection and classification in intrusion detection using Extra-Tree algorithm\",\"authors\":\"\",\"doi\":\"10.4018/ijisp.2022010113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of attacks increased with speedy development in web communication in the last couple of years. The Anomaly Detection method for IDS has become substantial in detecting novel attacks in Intrusion Detection System (IDS). Achieving high accuracy are the significant challenges in designing an intrusion detection system. It also emphasizes applying different feature selection techniques to identify the most suitable feature subset. The author uses Extremely randomized trees (Extra-Tree) for feature importance. The author tries multiple thresholds on the feature importance parameters to find the best features. If single classifiers use, then the classifier's output is wrong, so that the final decision may be wrong. So The author uses an Extra-Tree classifier applied to the best-selected features. The proposed method is estimated on standard datasets KDD CUP'99, NSL-KDD, and UNSW-NB15. The experimental results show that the proposed approach performs better than existing methods in detection rate, false alarm rate, and accuracy.\",\"PeriodicalId\":44332,\"journal\":{\"name\":\"International Journal of Information Security and Privacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijisp.2022010113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisp.2022010113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 7

摘要

近年来,随着网络通信的飞速发展,网络攻击的数量不断增加。入侵检测系统的异常检测方法已成为入侵检测系统中检测新型攻击的重要手段。在入侵检测系统设计中,实现高精度是一个重要的挑战。它还强调应用不同的特征选择技术来识别最合适的特征子集。作者使用极端随机树(Extra-Tree)来表示特征的重要性。作者在特征重要性参数上尝试了多个阈值来寻找最佳特征。如果单个分类器使用,那么分类器的输出是错误的,从而最终的决策可能是错误的。因此,作者使用Extra-Tree分类器应用于最佳选择的特征。在标准数据集KDD CUP'99、NSL-KDD和UNSW-NB15上对该方法进行了估计。实验结果表明,该方法在检测率、虚警率和准确率方面均优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble approach for feature selection and classification in intrusion detection using Extra-Tree algorithm
The number of attacks increased with speedy development in web communication in the last couple of years. The Anomaly Detection method for IDS has become substantial in detecting novel attacks in Intrusion Detection System (IDS). Achieving high accuracy are the significant challenges in designing an intrusion detection system. It also emphasizes applying different feature selection techniques to identify the most suitable feature subset. The author uses Extremely randomized trees (Extra-Tree) for feature importance. The author tries multiple thresholds on the feature importance parameters to find the best features. If single classifiers use, then the classifier's output is wrong, so that the final decision may be wrong. So The author uses an Extra-Tree classifier applied to the best-selected features. The proposed method is estimated on standard datasets KDD CUP'99, NSL-KDD, and UNSW-NB15. The experimental results show that the proposed approach performs better than existing methods in detection rate, false alarm rate, and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Security and Privacy
International Journal of Information Security and Privacy COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.50
自引率
0.00%
发文量
73
期刊介绍: As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信