{"title":"一种求解约束非线性方程组的高效混合无导数投影算法","authors":"K. Muangchoo","doi":"10.22452/mjs.vol40no3.6","DOIUrl":null,"url":null,"abstract":"In this paper, by combining the Solodov and Svaiter projection technique with the conjugate gradient method for unconstrained optimization proposed by Mohamed et al. (2020), we develop a derivative-free conjugate gradient method to solve nonlinear equations with convex constraints. The proposed method involves a spectral parameter which satisfies the sufficient descent condition. The global convergence is proved under the assumption that the underlying mapping is Lipschitz continuous and satisfies a weaker monotonicity condition. Numerical experiment shows that the proposed method is efficient.","PeriodicalId":18094,"journal":{"name":"Malaysian journal of science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EFFICIENT HYBRID DERIVATIVE-FREE PROJECTION ALGORITHM FOR CONSTRAINT NONLINEAR EQUATIONS\",\"authors\":\"K. Muangchoo\",\"doi\":\"10.22452/mjs.vol40no3.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by combining the Solodov and Svaiter projection technique with the conjugate gradient method for unconstrained optimization proposed by Mohamed et al. (2020), we develop a derivative-free conjugate gradient method to solve nonlinear equations with convex constraints. The proposed method involves a spectral parameter which satisfies the sufficient descent condition. The global convergence is proved under the assumption that the underlying mapping is Lipschitz continuous and satisfies a weaker monotonicity condition. Numerical experiment shows that the proposed method is efficient.\",\"PeriodicalId\":18094,\"journal\":{\"name\":\"Malaysian journal of science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22452/mjs.vol40no3.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22452/mjs.vol40no3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
AN EFFICIENT HYBRID DERIVATIVE-FREE PROJECTION ALGORITHM FOR CONSTRAINT NONLINEAR EQUATIONS
In this paper, by combining the Solodov and Svaiter projection technique with the conjugate gradient method for unconstrained optimization proposed by Mohamed et al. (2020), we develop a derivative-free conjugate gradient method to solve nonlinear equations with convex constraints. The proposed method involves a spectral parameter which satisfies the sufficient descent condition. The global convergence is proved under the assumption that the underlying mapping is Lipschitz continuous and satisfies a weaker monotonicity condition. Numerical experiment shows that the proposed method is efficient.