Diego García-Lucas, Ángel del Río, Mima Stanojkovski
{"title":"由模群代数确定的群不变量:偶与奇特征","authors":"Diego García-Lucas, Ángel del Río, Mima Stanojkovski","doi":"10.1007/s10468-022-10182-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i> be a an odd prime and let <i>G</i> be a finite <i>p</i>-group with cyclic commutator subgroup <span>\\(G^{\\prime }\\)</span>. We prove that the exponent and the abelianization of the centralizer of <span>\\(G^{\\prime }\\)</span> in <i>G</i> are determined by the group algebra of <i>G</i> over any field of characteristic <i>p</i>. If, additionally, <i>G</i> is 2-generated then almost all the numerical invariants determining <i>G</i> up to isomorphism are determined by the same group algebras; as a consequence the isomorphism type of the centralizer of <span>\\(G^{\\prime }\\)</span> is determined. These claims are known to be false for <i>p</i> = 2.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-022-10182-x.pdf","citationCount":"0","resultStr":"{\"title\":\"On Group Invariants Determined by Modular Group Algebras: Even Versus Odd Characteristic\",\"authors\":\"Diego García-Lucas, Ángel del Río, Mima Stanojkovski\",\"doi\":\"10.1007/s10468-022-10182-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>p</i> be a an odd prime and let <i>G</i> be a finite <i>p</i>-group with cyclic commutator subgroup <span>\\\\(G^{\\\\prime }\\\\)</span>. We prove that the exponent and the abelianization of the centralizer of <span>\\\\(G^{\\\\prime }\\\\)</span> in <i>G</i> are determined by the group algebra of <i>G</i> over any field of characteristic <i>p</i>. If, additionally, <i>G</i> is 2-generated then almost all the numerical invariants determining <i>G</i> up to isomorphism are determined by the same group algebras; as a consequence the isomorphism type of the centralizer of <span>\\\\(G^{\\\\prime }\\\\)</span> is determined. These claims are known to be false for <i>p</i> = 2.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-022-10182-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-022-10182-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10182-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 p 是奇素数,设 G 是有限 p 群,其循环换元子群是 \(G^{/prime }\) 。我们证明,G 中 \(G^{\prime }\) 的中心子的指数和无差别化是由 G 在任意特征 p 域上的群代数决定的。此外,如果 G 是 2 生的,那么几乎所有决定 G 直到同构的数字不变式都是由相同的群代数决定的;因此 \(G^{\prime }\) 的中心子的同构类型也是决定的。这些说法在 p = 2 时是错误的。
On Group Invariants Determined by Modular Group Algebras: Even Versus Odd Characteristic
Let p be a an odd prime and let G be a finite p-group with cyclic commutator subgroup \(G^{\prime }\). We prove that the exponent and the abelianization of the centralizer of \(G^{\prime }\) in G are determined by the group algebra of G over any field of characteristic p. If, additionally, G is 2-generated then almost all the numerical invariants determining G up to isomorphism are determined by the same group algebras; as a consequence the isomorphism type of the centralizer of \(G^{\prime }\) is determined. These claims are known to be false for p = 2.