{"title":"α-Al碳纳米管与银纳米粒子复合材料的导电性和强度的改善","authors":"V. Aigbodion","doi":"10.4314/njtd.v19i3.9","DOIUrl":null,"url":null,"abstract":"An attempt has been made to develop a new enhanced electrical conductor nanocomposites using green synthesis silver nanoparticles (GAgNPs) modified carbon nanotubes (CNTs) reinforced aluminum nanocomposites. High-intensity ball milling and spark plasma sintering (SPS) were used to produce the composites. The nanocomposite' microstructure, strength, model, and electrical conductivity were all determined. 2%GAg.NPs in Al-4-percent CNTs helps to refine the grain structure of the Al-4-percent CNTs. More dislocation density was generated by the creation of sub-grain in the Al-4 percent CNTs+2 percent GAgNPs composite. Tensile strength and electrical conductivity were increased by 82.14 and 106.88% using Al-4-percent CNTs +2%GAg.NPs nanocomposite. The ductility mode of fracture associated with the tiny sub-grain produced at the surface was greatly improved when 2% GAgNPs were added to Al-4% CNTs. It was established that the GAgNPS can been used to coat CNTs enhance the strength and electrical conductivity of Al-4 percent CNTs nanocomposites.","PeriodicalId":31273,"journal":{"name":"Nigerian Journal of Technological Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Electrical Conductivity and Strength of α-Al-Carbon Nanotubes Blended with Silver Nanoparticles Composites\",\"authors\":\"V. Aigbodion\",\"doi\":\"10.4314/njtd.v19i3.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An attempt has been made to develop a new enhanced electrical conductor nanocomposites using green synthesis silver nanoparticles (GAgNPs) modified carbon nanotubes (CNTs) reinforced aluminum nanocomposites. High-intensity ball milling and spark plasma sintering (SPS) were used to produce the composites. The nanocomposite' microstructure, strength, model, and electrical conductivity were all determined. 2%GAg.NPs in Al-4-percent CNTs helps to refine the grain structure of the Al-4-percent CNTs. More dislocation density was generated by the creation of sub-grain in the Al-4 percent CNTs+2 percent GAgNPs composite. Tensile strength and electrical conductivity were increased by 82.14 and 106.88% using Al-4-percent CNTs +2%GAg.NPs nanocomposite. The ductility mode of fracture associated with the tiny sub-grain produced at the surface was greatly improved when 2% GAgNPs were added to Al-4% CNTs. It was established that the GAgNPS can been used to coat CNTs enhance the strength and electrical conductivity of Al-4 percent CNTs nanocomposites.\",\"PeriodicalId\":31273,\"journal\":{\"name\":\"Nigerian Journal of Technological Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Technological Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/njtd.v19i3.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Technological Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/njtd.v19i3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Improved Electrical Conductivity and Strength of α-Al-Carbon Nanotubes Blended with Silver Nanoparticles Composites
An attempt has been made to develop a new enhanced electrical conductor nanocomposites using green synthesis silver nanoparticles (GAgNPs) modified carbon nanotubes (CNTs) reinforced aluminum nanocomposites. High-intensity ball milling and spark plasma sintering (SPS) were used to produce the composites. The nanocomposite' microstructure, strength, model, and electrical conductivity were all determined. 2%GAg.NPs in Al-4-percent CNTs helps to refine the grain structure of the Al-4-percent CNTs. More dislocation density was generated by the creation of sub-grain in the Al-4 percent CNTs+2 percent GAgNPs composite. Tensile strength and electrical conductivity were increased by 82.14 and 106.88% using Al-4-percent CNTs +2%GAg.NPs nanocomposite. The ductility mode of fracture associated with the tiny sub-grain produced at the surface was greatly improved when 2% GAgNPs were added to Al-4% CNTs. It was established that the GAgNPS can been used to coat CNTs enhance the strength and electrical conductivity of Al-4 percent CNTs nanocomposites.