$mathcal{B}$-图的分块、行列式和永久性

IF 0.6 Q3 MATHEMATICS
R. Singh, R. Bapat
{"title":"$mathcal{B}$-图的分块、行列式和永久性","authors":"R. Singh, R. Bapat","doi":"10.22108/TOC.2017.105288.1508","DOIUrl":null,"url":null,"abstract":"Let $G$ be a graph (directed or undirected) having $k$ number of blocks $B_1, B_2,hdots,B_k$. A $mathcal{B}$-partition of $G$ is a partition consists of $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is an induced subgraph of $B_i$ for $i=1,2,hdots,k.$ The terms $prod_{i=1}^{k}det(hat{B}_i), prod_{i=1}^{k}text{per}(hat{B}_i)$ represent the det-summands and the per-summands, respectively, corresponding to the $mathcal{B}$-partition $(hat{B_1},hat{B_1},hdots,hat{B_k})$. The determinant (permanent) of a graph having no loops on its cut-vertices is equal to the summation of the det-summands (per-summands), corresponding to all possible $mathcal{B}$-partitions. In this paper, we calculate the determinant and the permanent of classes of graphs such as block graph, block graph with negatives cliques, signed unicyclic graph, mixed complete graph, negative mixed complete graph, and star mixed block graphs.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"7 1","pages":"37-54"},"PeriodicalIF":0.6000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"$mathcal{B}$-Partitions, determinant and permanent of graphs\",\"authors\":\"R. Singh, R. Bapat\",\"doi\":\"10.22108/TOC.2017.105288.1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a graph (directed or undirected) having $k$ number of blocks $B_1, B_2,hdots,B_k$. A $mathcal{B}$-partition of $G$ is a partition consists of $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is an induced subgraph of $B_i$ for $i=1,2,hdots,k.$ The terms $prod_{i=1}^{k}det(hat{B}_i), prod_{i=1}^{k}text{per}(hat{B}_i)$ represent the det-summands and the per-summands, respectively, corresponding to the $mathcal{B}$-partition $(hat{B_1},hat{B_1},hdots,hat{B_k})$. The determinant (permanent) of a graph having no loops on its cut-vertices is equal to the summation of the det-summands (per-summands), corresponding to all possible $mathcal{B}$-partitions. In this paper, we calculate the determinant and the permanent of classes of graphs such as block graph, block graph with negatives cliques, signed unicyclic graph, mixed complete graph, negative mixed complete graph, and star mixed block graphs.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"7 1\",\"pages\":\"37-54\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.105288.1508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.105288.1508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$G$是具有$k$个块$B_1,B_2,hdots,B_k$的图(有向或无向)。$G$的$mathcal{B}$分区是由$k$顶点不相交子图$(hat{B_1},hat{B_1},hdots,hat{B_k})$组成的分区,使得$hat{B}_i$是$i=1,2,hdots,k的$B_i$的诱导子图。$术语$prod_{i=1}^{k}det(帽子{B}_i),prod_{i=1}^{k}text{per}(帽子{B}_i)$分别表示与$mathcal{B}$分区$(hat{B_1},hat{B_1},hdots,hat}B_k})$相对应的det sumands和per sumands。一个在其切割顶点上没有循环的图的行列式(永久)等于det sumands(每个sumands)的总和,对应于所有可能的$mathcal{B}$-分区。本文计算了图类如块图、负群块图、有符号单环图、混合完全图、负混合完全图和星形混合块图的行列式和永久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$mathcal{B}$-Partitions, determinant and permanent of graphs
Let $G$ be a graph (directed or undirected) having $k$ number of blocks $B_1, B_2,hdots,B_k$. A $mathcal{B}$-partition of $G$ is a partition consists of $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is an induced subgraph of $B_i$ for $i=1,2,hdots,k.$ The terms $prod_{i=1}^{k}det(hat{B}_i), prod_{i=1}^{k}text{per}(hat{B}_i)$ represent the det-summands and the per-summands, respectively, corresponding to the $mathcal{B}$-partition $(hat{B_1},hat{B_1},hdots,hat{B_k})$. The determinant (permanent) of a graph having no loops on its cut-vertices is equal to the summation of the det-summands (per-summands), corresponding to all possible $mathcal{B}$-partitions. In this paper, we calculate the determinant and the permanent of classes of graphs such as block graph, block graph with negatives cliques, signed unicyclic graph, mixed complete graph, negative mixed complete graph, and star mixed block graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信