三角形的Zindler点

Q4 Mathematics
A. Berele, S. Catoiu
{"title":"三角形的Zindler点","authors":"A. Berele, S. Catoiu","doi":"10.1080/0025570X.2022.2127301","DOIUrl":null,"url":null,"abstract":"Summary Zindler’s theorem of 1920 says that each planar convex set admits two perpendicular lines that divide it into four parts of equal area. Call the intersection of the two lines a Zindler point. We show that each triangle admits either one, two or three Zindler points, and we classify all triangles according to these three numbers.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zindler Points of Triangles\",\"authors\":\"A. Berele, S. Catoiu\",\"doi\":\"10.1080/0025570X.2022.2127301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Zindler’s theorem of 1920 says that each planar convex set admits two perpendicular lines that divide it into four parts of equal area. Call the intersection of the two lines a Zindler point. We show that each triangle admits either one, two or three Zindler points, and we classify all triangles according to these three numbers.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2022.2127301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2022.2127301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

1920年的Zindler定理指出,每个平面凸集都允许两条垂直线,这两条线将其划分为相等面积的四部分。将这两条线的交点称为津德勒点。我们证明了每个三角形允许一个、两个或三个Zindler点,并根据这三个数字对所有三角形进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zindler Points of Triangles
Summary Zindler’s theorem of 1920 says that each planar convex set admits two perpendicular lines that divide it into four parts of equal area. Call the intersection of the two lines a Zindler point. We show that each triangle admits either one, two or three Zindler points, and we classify all triangles according to these three numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信