M. Pugliano, Xavier Vanbellinghen, P. Schwinté, N. Benkirane-Jessel, L. Keller
{"title":"水母II型胶原、人干细胞和生长因子-β3联合作为软骨修复的治疗性植入物","authors":"M. Pugliano, Xavier Vanbellinghen, P. Schwinté, N. Benkirane-Jessel, L. Keller","doi":"10.4172/2157-7633.1000382","DOIUrl":null,"url":null,"abstract":"Background: The limitations associated to current therapies for articular cartilage repair led us to develop new strategies of applicable active therapeutic materials. Human mesenchymal stem cells from bone marrow are promising relevant cell sources for cell therapy and regenerative medicine, in particular for cartilage repair. Recently, a new source of non-mammalian collagen type II emerged and represents a promising tool for cartilage tissue engineering. \nMethods: To develop a new therapeutic implant for cartilage repair, we combined (i) jellyfish collagen type II as an implant; (ii) active nanoreservoirs of growth factors (TGF-β3); (iii) adult human mesenchymal stem cells derived from bone marrow. \nResults: Our results indicated clearly that (i) the jellyfish collagen type II implant leads to chondrogenic differentiation of mesenchymal stem cells; (ii) the combined implant and active therapeutic TGF-β3 as nanoreservoirs lead to chondrogenic gene expression and cartilage differentiation. \nConclusion: We reported here a new stem cell - based therapeutic active implant for cartilage repair. This approach combines jellyfish collagen type II, human stem cells and TGF-β3 as a therapeutic implant to improve cartilage differentiation and repair.","PeriodicalId":89694,"journal":{"name":"Journal of stem cell research & therapy","volume":"7 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2157-7633.1000382","citationCount":"25","resultStr":"{\"title\":\"Combined Jellyfish Collagen Type II, Human Stem Cells and Tgf-β3 as a Therapeutic Implant for Cartilage Repair\",\"authors\":\"M. Pugliano, Xavier Vanbellinghen, P. Schwinté, N. Benkirane-Jessel, L. Keller\",\"doi\":\"10.4172/2157-7633.1000382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The limitations associated to current therapies for articular cartilage repair led us to develop new strategies of applicable active therapeutic materials. Human mesenchymal stem cells from bone marrow are promising relevant cell sources for cell therapy and regenerative medicine, in particular for cartilage repair. Recently, a new source of non-mammalian collagen type II emerged and represents a promising tool for cartilage tissue engineering. \\nMethods: To develop a new therapeutic implant for cartilage repair, we combined (i) jellyfish collagen type II as an implant; (ii) active nanoreservoirs of growth factors (TGF-β3); (iii) adult human mesenchymal stem cells derived from bone marrow. \\nResults: Our results indicated clearly that (i) the jellyfish collagen type II implant leads to chondrogenic differentiation of mesenchymal stem cells; (ii) the combined implant and active therapeutic TGF-β3 as nanoreservoirs lead to chondrogenic gene expression and cartilage differentiation. \\nConclusion: We reported here a new stem cell - based therapeutic active implant for cartilage repair. This approach combines jellyfish collagen type II, human stem cells and TGF-β3 as a therapeutic implant to improve cartilage differentiation and repair.\",\"PeriodicalId\":89694,\"journal\":{\"name\":\"Journal of stem cell research & therapy\",\"volume\":\"7 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2157-7633.1000382\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of stem cell research & therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7633.1000382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of stem cell research & therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7633.1000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined Jellyfish Collagen Type II, Human Stem Cells and Tgf-β3 as a Therapeutic Implant for Cartilage Repair
Background: The limitations associated to current therapies for articular cartilage repair led us to develop new strategies of applicable active therapeutic materials. Human mesenchymal stem cells from bone marrow are promising relevant cell sources for cell therapy and regenerative medicine, in particular for cartilage repair. Recently, a new source of non-mammalian collagen type II emerged and represents a promising tool for cartilage tissue engineering.
Methods: To develop a new therapeutic implant for cartilage repair, we combined (i) jellyfish collagen type II as an implant; (ii) active nanoreservoirs of growth factors (TGF-β3); (iii) adult human mesenchymal stem cells derived from bone marrow.
Results: Our results indicated clearly that (i) the jellyfish collagen type II implant leads to chondrogenic differentiation of mesenchymal stem cells; (ii) the combined implant and active therapeutic TGF-β3 as nanoreservoirs lead to chondrogenic gene expression and cartilage differentiation.
Conclusion: We reported here a new stem cell - based therapeutic active implant for cartilage repair. This approach combines jellyfish collagen type II, human stem cells and TGF-β3 as a therapeutic implant to improve cartilage differentiation and repair.