具有反正切趋势的非线性单位根检验:仿真及其在金融中的应用

IF 0.1 Q4 MATHEMATICS
Deniz Ilalan, Özgür Özel
{"title":"具有反正切趋势的非线性单位根检验:仿真及其在金融中的应用","authors":"Deniz Ilalan, Özgür Özel","doi":"10.1080/25742558.2018.1458555","DOIUrl":null,"url":null,"abstract":"Abstract We consider arctangent as the logistic function and compute the asymptotic critical values of the related non-linear unit root test via Monte Carlo simulation. While doing so, we got inspiration from some pioneering articles and use first-order Taylor approximation. We observe that this newly proposed test exhibits higher power than some well-known linear and non-linear tests. We apply our test to some stock indexes and find out that a non-linear arctangent trend can be at stage, rather than a linear unit root process.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1458555","citationCount":"0","resultStr":"{\"title\":\"Non-linear unit root testing with arctangent trend: Simulation and applications in finance\",\"authors\":\"Deniz Ilalan, Özgür Özel\",\"doi\":\"10.1080/25742558.2018.1458555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider arctangent as the logistic function and compute the asymptotic critical values of the related non-linear unit root test via Monte Carlo simulation. While doing so, we got inspiration from some pioneering articles and use first-order Taylor approximation. We observe that this newly proposed test exhibits higher power than some well-known linear and non-linear tests. We apply our test to some stock indexes and find out that a non-linear arctangent trend can be at stage, rather than a linear unit root process.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2018.1458555\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2018.1458555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1458555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们将反正切函数视为逻辑函数,并通过蒙特卡罗模拟计算了相关非线性单位根检验的渐近临界值。在这样做的同时,我们从一些开创性的文章中获得了灵感,并使用了一阶泰勒近似。我们观察到,这种新提出的测试比一些众所周知的线性和非线性测试显示出更高的功率。我们将我们的测试应用于一些股指,发现非线性反正切趋势可能处于阶段,而不是线性单位根过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear unit root testing with arctangent trend: Simulation and applications in finance
Abstract We consider arctangent as the logistic function and compute the asymptotic critical values of the related non-linear unit root test via Monte Carlo simulation. While doing so, we got inspiration from some pioneering articles and use first-order Taylor approximation. We observe that this newly proposed test exhibits higher power than some well-known linear and non-linear tests. We apply our test to some stock indexes and find out that a non-linear arctangent trend can be at stage, rather than a linear unit root process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信