{"title":"出生体重与孕龄:非传染性疾病人群健康的早期生命管理策略","authors":"Salmi Issa Al, H. Suad","doi":"10.23937/2469-5769/1510042","DOIUrl":null,"url":null,"abstract":"Non-communicable diseases (NCD) are rising throughout the globe over the last few decades. Developing countries bear the worse burden of these NCD. Similarly, low birthweight is increasing around the world where most of this prevalence commonly seen in the developing countries but as well in the well-developed countries where advancement of health care managed to increase the survival of the very low birthweight babies. In recent years, there has been great interest in the early development of the foetus and the impact of growth during the gestational period on the development of diseases in later life, and in particular that termed a ‘critical period’. The ‘critical period’ of growth of the kidney is the rapid growth period that starts from the ninth week of gestation onwards, which is determined by rapid cell division. Disproportionate growth of different organ systems in utero can occur because different tissues have different critical periods of growth at different times. LBW, which reflects adverse effects on development in the uterus, contributes to this phenomenon of disease programming in early life. It is not only the presence or absence of genes that control our destiny, but the way in which gene expression may be permanently changed by, for example, the nutritional environment in early life. Many epidemiological findings suggest that the risk of disease in adult life is programmed, and/or imprinted by the environment encountered before. The role of small size at birth with low number of cells may contribute to various NCD problem. Post-natal environmental factors further compound such a metabolic demand on body organs that lead to various organ function being overwhelmed with increase in metabolic rate. Hence this leads to increase demand upon various structures, such as nephron with hyperfiltration, organ dysfunction ensues. Hence, an early strategy health program is of great importance to be instituted to detect major risk factors which may arise early in life in those with LBW and or prematurity. Introduction Non-communicable Chronic diseases, such as diabetes, high blood pressure and kidney disease, are increasing rapidly in many populations globally. Poverty and socio-economic disadvantage, together with lifestyle and dietary changes are significant contributing factors [1,2]. Thrifty hypothesis proposes that type 2 diabetes mellitus (T2DM) and numerous components of metabolic syndrome consequence from derisory intrauterine environments for best fetal growth. Numerous studies have confirmed an increased risk of diabetes or impaired glucose tolerance in relation to low birthweight (LBW) [3]. In spite of number of critics, thrifty phenotype has modulated an important role for genetic factors in the aetiology of T2DM and concluded that “environmental, undoubtedly nutritional factors operating in early life play a chief causative part in T2DM and other components of metabolic syndrome. Barker, et al. stated that T2DM and high blood pressure have a shared origin during growth in sub-optimal development in utero, and that syndrome X ought to be called “the small-baby” syndrome [4]. It is proposed that the association between LBW and various metabolic syndrome components including diabetes development in adulthood reflects the long-term effects of decreased growth of the endocrine pancreas cells, kidney cells and other tissues in utero, which may be a consequence of maternal undernutrition. ReSeARcH ARtIcle","PeriodicalId":73466,"journal":{"name":"International journal of pediatric research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Birthweight and Gestational Age: Early Life Management Strategy to Population Health for Non-Communicable Diseases\",\"authors\":\"Salmi Issa Al, H. Suad\",\"doi\":\"10.23937/2469-5769/1510042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-communicable diseases (NCD) are rising throughout the globe over the last few decades. Developing countries bear the worse burden of these NCD. Similarly, low birthweight is increasing around the world where most of this prevalence commonly seen in the developing countries but as well in the well-developed countries where advancement of health care managed to increase the survival of the very low birthweight babies. In recent years, there has been great interest in the early development of the foetus and the impact of growth during the gestational period on the development of diseases in later life, and in particular that termed a ‘critical period’. The ‘critical period’ of growth of the kidney is the rapid growth period that starts from the ninth week of gestation onwards, which is determined by rapid cell division. Disproportionate growth of different organ systems in utero can occur because different tissues have different critical periods of growth at different times. LBW, which reflects adverse effects on development in the uterus, contributes to this phenomenon of disease programming in early life. It is not only the presence or absence of genes that control our destiny, but the way in which gene expression may be permanently changed by, for example, the nutritional environment in early life. Many epidemiological findings suggest that the risk of disease in adult life is programmed, and/or imprinted by the environment encountered before. The role of small size at birth with low number of cells may contribute to various NCD problem. Post-natal environmental factors further compound such a metabolic demand on body organs that lead to various organ function being overwhelmed with increase in metabolic rate. Hence this leads to increase demand upon various structures, such as nephron with hyperfiltration, organ dysfunction ensues. Hence, an early strategy health program is of great importance to be instituted to detect major risk factors which may arise early in life in those with LBW and or prematurity. Introduction Non-communicable Chronic diseases, such as diabetes, high blood pressure and kidney disease, are increasing rapidly in many populations globally. Poverty and socio-economic disadvantage, together with lifestyle and dietary changes are significant contributing factors [1,2]. Thrifty hypothesis proposes that type 2 diabetes mellitus (T2DM) and numerous components of metabolic syndrome consequence from derisory intrauterine environments for best fetal growth. Numerous studies have confirmed an increased risk of diabetes or impaired glucose tolerance in relation to low birthweight (LBW) [3]. In spite of number of critics, thrifty phenotype has modulated an important role for genetic factors in the aetiology of T2DM and concluded that “environmental, undoubtedly nutritional factors operating in early life play a chief causative part in T2DM and other components of metabolic syndrome. Barker, et al. stated that T2DM and high blood pressure have a shared origin during growth in sub-optimal development in utero, and that syndrome X ought to be called “the small-baby” syndrome [4]. It is proposed that the association between LBW and various metabolic syndrome components including diabetes development in adulthood reflects the long-term effects of decreased growth of the endocrine pancreas cells, kidney cells and other tissues in utero, which may be a consequence of maternal undernutrition. ReSeARcH ARtIcle\",\"PeriodicalId\":73466,\"journal\":{\"name\":\"International journal of pediatric research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pediatric research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23937/2469-5769/1510042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pediatric research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23937/2469-5769/1510042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Birthweight and Gestational Age: Early Life Management Strategy to Population Health for Non-Communicable Diseases
Non-communicable diseases (NCD) are rising throughout the globe over the last few decades. Developing countries bear the worse burden of these NCD. Similarly, low birthweight is increasing around the world where most of this prevalence commonly seen in the developing countries but as well in the well-developed countries where advancement of health care managed to increase the survival of the very low birthweight babies. In recent years, there has been great interest in the early development of the foetus and the impact of growth during the gestational period on the development of diseases in later life, and in particular that termed a ‘critical period’. The ‘critical period’ of growth of the kidney is the rapid growth period that starts from the ninth week of gestation onwards, which is determined by rapid cell division. Disproportionate growth of different organ systems in utero can occur because different tissues have different critical periods of growth at different times. LBW, which reflects adverse effects on development in the uterus, contributes to this phenomenon of disease programming in early life. It is not only the presence or absence of genes that control our destiny, but the way in which gene expression may be permanently changed by, for example, the nutritional environment in early life. Many epidemiological findings suggest that the risk of disease in adult life is programmed, and/or imprinted by the environment encountered before. The role of small size at birth with low number of cells may contribute to various NCD problem. Post-natal environmental factors further compound such a metabolic demand on body organs that lead to various organ function being overwhelmed with increase in metabolic rate. Hence this leads to increase demand upon various structures, such as nephron with hyperfiltration, organ dysfunction ensues. Hence, an early strategy health program is of great importance to be instituted to detect major risk factors which may arise early in life in those with LBW and or prematurity. Introduction Non-communicable Chronic diseases, such as diabetes, high blood pressure and kidney disease, are increasing rapidly in many populations globally. Poverty and socio-economic disadvantage, together with lifestyle and dietary changes are significant contributing factors [1,2]. Thrifty hypothesis proposes that type 2 diabetes mellitus (T2DM) and numerous components of metabolic syndrome consequence from derisory intrauterine environments for best fetal growth. Numerous studies have confirmed an increased risk of diabetes or impaired glucose tolerance in relation to low birthweight (LBW) [3]. In spite of number of critics, thrifty phenotype has modulated an important role for genetic factors in the aetiology of T2DM and concluded that “environmental, undoubtedly nutritional factors operating in early life play a chief causative part in T2DM and other components of metabolic syndrome. Barker, et al. stated that T2DM and high blood pressure have a shared origin during growth in sub-optimal development in utero, and that syndrome X ought to be called “the small-baby” syndrome [4]. It is proposed that the association between LBW and various metabolic syndrome components including diabetes development in adulthood reflects the long-term effects of decreased growth of the endocrine pancreas cells, kidney cells and other tissues in utero, which may be a consequence of maternal undernutrition. ReSeARcH ARtIcle