{"title":"振荡翼升力产生、尾流拓扑和运动学的关联","authors":"Suyash Verma, M. Khalid, A. Hemmati","doi":"10.1177/17568293211073959","DOIUrl":null,"url":null,"abstract":"The association of lift generation and evolution of wake topology behind an oscillating foil with combined heaving and pitching motion is investigated numerically at a range of bluereduced frequency (0.16 ≤ f * ≤ 0.48), phase offset (0 ∘ ≤ ϕ ≤ 315 ∘ ) and Reynolds number (1000 ≤ R e ≤ 4000). The pitch-dominated kinematics that coincide with the range of ϕ ≤ 120 ∘ and ϕ ≥ 225 ∘ suggests that leading edge vortices are suppressed while trailing edge vortices dominate the wake with increasing reduced frequency. This corresponds to a transition in wake topology from a 2 P to a reverse Von Kármán wake mode. Contrarily, heave dominated kinematics (120 ∘ < ϕ ≤ 225 ∘ ) did not exhibit any wake topology transition with increasing f * . The temporal lift variation associated with heave-dominated regime further revealed a symmetric feature in terms of the time taken to attain peak lift generation within an oscillation cycle. This temporal symmetry was, however, lost as kinematics transitioned from heave- to pitch-dominated regime. Analyzing the wake evolution and lift features at quarter phase of an oscillation cycle revealed the existence of a correspondence between the two processes during the heave- and pitch-dominated kinematics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On association of lift generation, wake topology and kinematics of oscillating foils\",\"authors\":\"Suyash Verma, M. Khalid, A. Hemmati\",\"doi\":\"10.1177/17568293211073959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The association of lift generation and evolution of wake topology behind an oscillating foil with combined heaving and pitching motion is investigated numerically at a range of bluereduced frequency (0.16 ≤ f * ≤ 0.48), phase offset (0 ∘ ≤ ϕ ≤ 315 ∘ ) and Reynolds number (1000 ≤ R e ≤ 4000). The pitch-dominated kinematics that coincide with the range of ϕ ≤ 120 ∘ and ϕ ≥ 225 ∘ suggests that leading edge vortices are suppressed while trailing edge vortices dominate the wake with increasing reduced frequency. This corresponds to a transition in wake topology from a 2 P to a reverse Von Kármán wake mode. Contrarily, heave dominated kinematics (120 ∘ < ϕ ≤ 225 ∘ ) did not exhibit any wake topology transition with increasing f * . The temporal lift variation associated with heave-dominated regime further revealed a symmetric feature in terms of the time taken to attain peak lift generation within an oscillation cycle. This temporal symmetry was, however, lost as kinematics transitioned from heave- to pitch-dominated regime. Analyzing the wake evolution and lift features at quarter phase of an oscillation cycle revealed the existence of a correspondence between the two processes during the heave- and pitch-dominated kinematics.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293211073959\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211073959","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On association of lift generation, wake topology and kinematics of oscillating foils
The association of lift generation and evolution of wake topology behind an oscillating foil with combined heaving and pitching motion is investigated numerically at a range of bluereduced frequency (0.16 ≤ f * ≤ 0.48), phase offset (0 ∘ ≤ ϕ ≤ 315 ∘ ) and Reynolds number (1000 ≤ R e ≤ 4000). The pitch-dominated kinematics that coincide with the range of ϕ ≤ 120 ∘ and ϕ ≥ 225 ∘ suggests that leading edge vortices are suppressed while trailing edge vortices dominate the wake with increasing reduced frequency. This corresponds to a transition in wake topology from a 2 P to a reverse Von Kármán wake mode. Contrarily, heave dominated kinematics (120 ∘ < ϕ ≤ 225 ∘ ) did not exhibit any wake topology transition with increasing f * . The temporal lift variation associated with heave-dominated regime further revealed a symmetric feature in terms of the time taken to attain peak lift generation within an oscillation cycle. This temporal symmetry was, however, lost as kinematics transitioned from heave- to pitch-dominated regime. Analyzing the wake evolution and lift features at quarter phase of an oscillation cycle revealed the existence of a correspondence between the two processes during the heave- and pitch-dominated kinematics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.