链混合与链传递迭代函数系统

IF 0.4 Q4 MATHEMATICS
M. F. Nia
{"title":"链混合与链传递迭代函数系统","authors":"M. F. Nia","doi":"10.1080/1726037X.2020.1856338","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers some properties in topological dynamical systems in iterated function systems. First, we will introduce chain mixing and chain transitive iterated function systems then some results and an example is presented to compare with these notions in discrete dynamical systems. As our main result, using adding machine maps and topological conjugacy we show that chain mixing, chain transitive and chain recurrence properties in iterated function systems are equivalent.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"211 - 221"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1856338","citationCount":"1","resultStr":"{\"title\":\"Chain Mixing and Chain Transitive Iterated Function Systems\",\"authors\":\"M. F. Nia\",\"doi\":\"10.1080/1726037X.2020.1856338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper considers some properties in topological dynamical systems in iterated function systems. First, we will introduce chain mixing and chain transitive iterated function systems then some results and an example is presented to compare with these notions in discrete dynamical systems. As our main result, using adding machine maps and topological conjugacy we show that chain mixing, chain transitive and chain recurrence properties in iterated function systems are equivalent.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"211 - 221\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1856338\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1856338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1856338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了迭代函数系统中拓扑动力系统的一些性质。首先,我们将介绍链混合和链传递迭代函数系统,然后给出一些结果和一个例子来比较这些概念在离散动力系统中的应用。我们的主要结果是,利用添加机器映射和拓扑共轭证明了迭代函数系统中的链混合、链传递和链递归性质是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chain Mixing and Chain Transitive Iterated Function Systems
Abstract This paper considers some properties in topological dynamical systems in iterated function systems. First, we will introduce chain mixing and chain transitive iterated function systems then some results and an example is presented to compare with these notions in discrete dynamical systems. As our main result, using adding machine maps and topological conjugacy we show that chain mixing, chain transitive and chain recurrence properties in iterated function systems are equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信